
������
� ����	
 ����	��
	
 ���

Jonathan Worthington
London Perl Workshop 2005

������	� � ����	
 ����	��
	
 ���

A Multi-threaded Talk

Asking and answering three questions – in
parallel!

What?
What is Parrot? What does it do?

Where?
Where are we at with developing Parrot?

Why?
Why is Parrot designed the way it is?

������	� � ����	
 ����	��
	
 ���

What is Parrot?

•A runtime for dynamic languages.

•Spawned by the need for a runtime
engine for Perl 6.

•Aims to provide support for many
languages and allow interoperability
between them.

•A register based virtual machine.

•Named after an April Fool’s joke.

������	� � ����	
 ���� ��
	
 ���

Where are we with Parrot?

•Public development started in September
2001.

•Many of Parrot’s core features are now
working, though several important
subsystems not completely implemented or
in some cases not specified.

•Pugs (the Perl 6 prototype interpreter) can
target Parrot for some language features,
and a number of other compilers underway.

������	� � ����	
 ����	��
	
 ���

We have the JVM & .NET CLR - why Parrot?

•.NET and the JVM built with static
languages in mind; Perl, Python, etc. are
dynamic and less well supported.

•.NET constrains high level semantics of
languages to achieve interoperability. Parrot
has interoperability provided at an assembly
level – more later.

•Need to support the range of platforms that
Perl 5 did, and more.

������	� � ����	
 ����	��
	
 ���

Parrot is a Virtual Machine

•Hides away the details of the underlying
hardware platform and operating system.

•Defines a common set of instructions and
a common API for I/O, threading, etc.

•Efficiently translates the virtual instructions
to those supported by the underlying
hardware and maps the common API to
the one provided by the operating system.

•Supports high level language constructs.

������	� � ����	
 ����	��
	
 ���

Why Virtual Machines?

1. Simplified software development and
deployment.

Program 1

Compile For
Each Platform

Program 2

Compile For
Each Platform

Without a VM

������	� � ����	
 ����	��
	
 ���

Why Virtual Machines?

1. Simplified software development and
deployment.

VM Supports Each
Platform

With a VM

Program 1 Program 2

VM

Compile to the VM

������	� � ����	
 ����	��
	
 ���

Why Virtual Machines?

2. High level languages have a lot in
common.

• Strings, arrays, hashes, references, …

• Subroutines, objects, namespaces, …

• Closures and continuations

• Memory management

Can implement these just once in the VM.

������	� � ����	
 ����	��
	
 ���

Why Virtual Machines?

3. High level language interoperability
becomes easier.

• A consistent way to call subroutines and
methods.

• A common representation of data types:
strings, arrays, objects, etc.

• Code in multiple languages essentially
runs as a single program.

������	� � ����	
 ����	��
	
 ���

Why Virtual Machines?

4. Can provide fine grained security and
quota restrictions.

• “This program can connect to server
X, but can not access any local files.”

5. Debugging and profiling more easily
supported.

6. Possibility of dynamic optimizations by
exploiting what can be known at runtime
but not at compile time.

������	� � ����	
 ����	��
	
 ���

Parrot is a Register Machine

•A register is a numbered location where
working data can be stored.

•Most Parrot instructions either

•Load data into registers from elsewhere

•Perform operations on data held in
registers (add, mul, and, or, …)

•Compare values in registers (ifgt, ifle, …)

•Store data from registers to elsewhere

������	� � ����	
 ����	��
	
 ���

Parrot is a Register Machine

The add instruction in Parrot adds the values
stored in two registers and stores the result in
a third.

add I1, I3, I4
I0 I1 I2 I3 I4 I5 I6 I7

17 25

������	� � ����	
 ����	��
	
 ���

Parrot is a Register Machine

The add instruction in Parrot adds the values
stored in two registers and stores the result in
a third.

add I1, I3, I4
I0 I1 I2 I3 I4 I5 I6 I7

17 25

+

������	� � ����	
 ����	��
	
 ���

Parrot is a Register Machine

The add instruction in Parrot adds the values
stored in two registers and stores the result in
a third.

add I0, I3, I4
I0 I1 I2 I3 I4 I5 I6 I7

17 25

+

42

������	� � ����	
 ����	��
	
 ���

Why a register machine?

Many virtual machines, including .NET and
JVM, are implemented as stack machines.

push 17

push 25

add

������	� � ����	
 ����	��
	
 ���

Why a register machine?

Many virtual machines, including .NET and
JVM, are implemented as stack machines.

17push 17

push 25

add

������	� � ����	
 ����	��
	
 ���

Why a register machine?

Many virtual machines, including .NET and
JVM, are implemented as stack machines.

17

17
25

push 17

push 25

add

������	� � ����	
 ����	��
	
 ���

Why a register machine?

Many virtual machines, including .NET and
JVM, are implemented as stack machines.

17

17
25

42

push 17

push 25

add

+

������	� � ����	
 ����	��
	
 ���

Why a register machine?

•What could be expressed in one register
instruction took at least three stack
instructions.

•When interpreting code, there is overhead
for mapping each virtual instructions to a
real one, so less instructions is a Good
Thing.

•Also, no need for the interpreter to
maintain a stack pointer.

������	� � ����	
 ����	��
	
 ���

Register Types

•Parrot has 4 types of register.

•Integer registers store native integers

•Number registers store native floating
point numbers (probably doubles)

•String registers store references to
strings

•PMC registers store references to Parrot
Magic Cookies (more later)

������	� � ����	
 ����	��
	
 ���

Why Have Different Register Types?

•Need to provide the possibility of high
performance execution

•Native integer and floating point
registers map directly to hardware.

•Also need to provide support for language
specific behaviour and consistent cross-
platform behaviour.

•PMCs allow for implementation of types
with custom behaviours.

������	� � ����	
 ����	��
	
 ���

Variable Sized Register Frames

•Registers in hardware CPUs are physical
chunks of memory on the CPU, and there
are a fixed number of them.

•Initially Parrot followed this, having 32 of
each type of register making up a register
frame.

•If more registers were needed an array
stored in a PMC register could be used to
spill values to.

������	� � ����	
 ����	��
	
 ���

Variable Sized Register Frames

•Parrot register frames are simply arrays
located in main system memory.

•Therefore the restrictions on a hardware
CPU need not apply to Parrot.

•Parrot has had variable sized register
frames since release 0.3.1 (November ’05).

•The number of registers of each type is
simply what is used by a unit of code (a
unit usually being a subroutine).

������	� � ����	
 ����	��
	
 ���

Why Variable Sized Register Frames?

•Never run out of registers so no need to
spill, leading to faster execution.

•Units that only use a few registers will use
less memory – especially good for deeply
recursive code.

•The change could be done without breaking
most existing Parrot programs.

•Downside is that the variable size of register
frames adds a little “bookkeeping” overhead.

������	� � ����	
 ����	��
	
 ���

What do Parrot programs look like?

Parrot programs are mostly represented in one
of three forms.
Best For
People

PIR = Parrot Intermediate Representation

PASM = Parrot Assembly

PBC = Parrot Bytecode
Best For
The VM

������	� � ����	
 ����	��
	
 ���

What does PIR look like?
.sub factorial

.param int n

.local int result

if n > 1 goto recurse
result = 1
goto return

recurse:
$I0 = n – 1
result = factorial($I0)
result *= n

return:
.return (result)

.end

Simple sub
calling syntax

Virtual
registers

Simple param.
access syntax

Simple sub
declaration

Named
registers

Simple return
syntax

Register code
looks like HLL

������	� � ����	
 ����	��
	
 ���

What does PASM look like?
factorial:

get_params "(0)", I1
lt 1, I1, recurse
set I0, 1
branch return

recurse:
sub I2, I1, 1

@pcc_sub_call_0:
set_args “(0)”, I2
set_p_pc P0, factorial
get_results “(0)”, I1
invokecc P0
mul I0, I1

return:
@pcc_sub_ret_1:

set_returns “(0)”, I0
returncc

Opcode to get
parameters

Calling
conventions
exposed

Looks like
assembly

Opcodes for
returning

������	� � ����	
 ����	��
	
 ���

What does PBC look like?

•A portable binary file format.

•Written with the endianness and word
size of the machine that generated it –
good for performance.

•If running on a different type of machine
translation done “on the fly” – good for
portability.

•Can be executed (almost) directly by the
Parrot virtual machine.

������	� � ����	
 ����	��
	
 ���

Why PIR, PASM and PBC?

•Need something that is efficient to load and
directly execute – PBC

•Need something small to distribute – PBC

•Need something that is human readable and
writable. – PIR or PASM

•Need a way to abstract away details (like
calling conventions) from compilers – PIR

•Need low level assembly language – PASM

������	� � ����	
 ���� ��
	
 ���

Where are we at with PIR/PASM/PBC?

•They all work and can be used.

•More PIR syntax still to come.

•PIR compiler needs some further tidying.

•Room for improvements to PIR optimization.

•PBC file format missing the ability to store
some things, like HLL debug info and source.

•Need to provide support for working with
PBC files from PIR.

������	� � ����	
 ����	��
	
 ���

What is a PMC?

•A PMC defines a type with a certain set of
behaviours.

•Implements some of a pre-defined set of
methods that represent behaviours a type
may need to customize, such as integer
assignment, addition or getting the number
of elements.

•Method bodies written in C, but much code
is generated by a PMC build too.

������	� � ����	
 ����	��
	
 ���

How do PMCs work?

•Each PMC has a pointer to a v-table.

•A v-table is a list of function pointers to
the code implementing each method of the
PMC.

•When operations are performed on PMCs,
the v-table is used to call the appropriate
PMC method.

•Essentially, PMCs inherit from a base class
and implement methods as needed.

������	� � ����	
 ����	��
	
 ���

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

������	� � ����	
 ����	��
	
 ���

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

……

0x00C03218v-table

……

PMC

������	� � ����	
 ����	��
	
 ���

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

……

0x00C03218v-table

……

PMC

……

0x00A42910inc

……

V-table

������	� � ����	
 ����	��
	
 ���

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

……

0x00C03218v-table

……

PMC

……

0x00A42910inc

……

V-table
Increment

v-table
function

������	� � ����	
 ����	��
	
 ���

PMCs allow language specific behaviour

•The same operation in two languages may
produce very different behaviour.

•Consider the increment operator (++)
performed on the string “ABC”.

•In Perl, the string becomes “ABD”.

•In Python, an exception is thrown.

•PerlString and PythonString PMCs can
implement the “increment” method differently.

������	� � ����	
 ����	��
	
 ���

PMCs enable language interoperability

•PMCs not only have methods to perform
operations but also to get and set the data
stored in them in integer, number and string
form.

•The PerlString PMC need not know the
internals of another language’s string PMC.

•Simply call get_string on the other
language’s PMC to get the string value as a
standard Parrot string.

������	� � ����	
 ����	��
	
 ���

PMCs support aggregate types

•PMCs have v-table methods for keyed get
and set (where the key is an integer, string or
PMC).

•These provide an interface for implementing
arrays and dictionary data structures (such
as hash tables).

•Storage mechanism left for the PMC to
implement (e.g. a BitArray PMC could be
implemented that uses 1 bit per element).

������	� � ����	
 ����	��
	
 ���

PMCs do even more stuff!

•Provide the basis for the implementation of
an object system with v-table methods such
as add_parent, add_method find_method, isa
and more.

•A standard way to provide access to Parrot
features such as subs, coroutines and
continuations.

•PMCs simultaneously solve many problems
through a single simple mechanism.

������	� � ����	
 ���� ��
	
 ���

Where are we at with PMCs?

•Most PMC related stuff has worked pretty
solidly for a while. The PMC tool chain is
pretty good.

•Dynamically loadable PMCs, stored in DLLs,
currently do not work on some platforms.
Support on others is a bit messy.

•More Parrot features will come to be
presented as PMCs, such as I/O.

������	� � ����	
 ����	��
	
 ���

What is a run core?

•Takes Parrot bytecode and executes it.

•Involves mapping Parrot instructions to
instructions supported by the hardware.

•We would like:

•High portability

•High performance

•These often turn out to be opposing goals.

������	� � ����	
 ����	��
	
 ���

Interpreting Parrot Bytecode

•For each Parrot instruction write code in C to
perform the instruction.

•These are written in a standard format.

•An build tool takes these and generates a
run core by adding logic to move between
instructions and execute each one.

inline op add(out INT, in INT, in INT) :base_core {
$1 = $2 + $3;
goto NEXT();

}

������	� � ����	
 ����	��
	
 ���

The function call per op run cores

•The build tool generates a function for each
instruction and a table of function pointers.

•Execute instructions by looking up the
function pointer in the table for that
instruction then calling the function.

•Possible to add profiling and bounds
checking code between operations.

•Completely portable, but performance hit
due to making a function call per instruction.

������	� � ����	
 ����	��
	
 ���

The switch run core

•A huge “switch” block is generated with a
case for each Parrot instruction.

•After executing an instruction, the program
counter is increment and we jump back to the
top of the switch block again (using goto).

•Performance depends heavily on the code
the compiler generates for switch blocks, but
no per-op function call overhead is a bonus.

•Standard C so also completely portable.

������	� � ����	
 ����	��
	
 ���

The computed goto run core

•GCC allows goto to jump to a memory
address computed at runtime rather than a
named label like most other compilers.

•Emit C code for each instruction into a
function, prefix it with a label and build a table
of label addresses.

•After executing each instruction, look up the
address of the C code for the next instruction
using the table and goto that address.

������	� � ����	
 ����	��
	
 ���

The computed goto run core

•Computed goto is the highest performing
interpreter run core.

•Only works on a small number of compilers,
so not very portable.

•Code that uses computed goto interacts
nastily with the C compiler’s optimizer –
basically the optimizer can’t do much with it.

•Tends to mean that the computed goto core
takes a lot of time and memory to compile.

������	� � ����	
 ����	��
	
 ���

What is a JIT compiler?

•Just In Time means that a chunk of
bytecode is compiled when it is needed.

•Compilation involves translating Parrot
bytecode into machine code understood by
the hardware CPU.

•High performance – can execute some
Parrot instructions with one CPU instruction.

•Not at all portable – custom implementation
needed for each type of CPU.

������	� � ����	
 ����	��
	
 ���

How does JIT work?

•For each CPU, write a set of macros that
describe how to generate native code for
Parrot instructions.

•Do not need to write these for every
instruction; can fall back on calling the C
function implementing the method.

•The Configure script determines the CPU
type and selects the appropriate JIT compiler
to build if one is available.

������	� � ����	
 ����	��
	
 ���

How does JIT work?

•A chunk of memory is allocated and marked
executable if the OS requires this.

•For each instruction in the chunk of
bytecode that is to be translated:

•If a JIT macro was written for the
instruction, use that to emit native code.

•Otherwise, insert native code to call the C
function implementing that method, as an
interpreter would.

������	� � ����	
 ����	��
	
 ���

Why so many run cores?

•The function-call run cores support
debugging, tracing, profiling and JIT fallback.

•The switch or c-goto run cores offer good
performance on platforms with no JIT.

•JIT can offer very fast execution.

•Has compilation time overhead –
research suggests short lived programs
can run faster if just interpreted.

������	� � ����	
 ���� ��
	
 ���

Where are the run cores at?

•All of the interpreted ones are implemented
and work.

•Quite a few Parrot ops can be JIT compiled
on x86, PPC and Sun4.

•There is limited JIT support for MIPs, Alpha,
IA64 and ARM, though some of these are
broken due to internals changes.

•No AOT (Ahead Of Time) compilation yet;
lots of room for improvements with JIT.

������	� � ����	
 ����	��
	
 ���

How Parrot doesn’t do sub and method calls

•The traditional way to call a function involves
using a stack.

•Arguments are placed on the
stack.

•The program counter for the
next instruction (aka return
address) is put on the stack and
a jump made to the function.

arg 1
arg 2

arg 1

return addr
arg 2

������	� � ����	
 ����	��
	
 ���

How Parrot doesn’t do sub and method calls

•After the function has executed, the return
value is placed either on the stack or in an
agreed register.

•The return address is popped off the stack
and jumped to, returning control to the caller.

•For deeply recursive calls, a big stack is built
up. Some systems have limited stack space.

•Security issues – what if bad code allows the
return address to be overwritten?

������	� � ����	
 ����	��
	
 ���

Parrot uses Continuation Passing Scheme

•Each instance of a sub or method in the call
chain has its own set of registers that store
its current working data.

•Lexicals are also stored in registers.

•Along with various other bits of data related
to the current runtime state of a sub, these
items make up a context.

•Each context points to the previous context,
describing the chain of calls that was made.

������	� � ����	
 ����	��
	
 ���

Parrot uses Continuation Passing Scheme

•Taking a continuation makes a copy of this
chain of contexts.

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Continuation

take

������	� � ����	
 ����	��
	
 ���

Parrot uses Continuation Passing Scheme

•To call, take a continuation, then jump to the
sub, passing the continuation and arguments.

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

call chinchilla

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 4
(sub: chinchilla)

������	� � ����	
 ����	��
	
 ���

Parrot uses Continuation Passing Scheme

•Invoking a continuation involves replacing
the current call chain with what was captured.

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Continuation

invoke

������	� � ����	
 ����	��
	
 ���

Parrot uses Continuation Passing Scheme

•Conveniently, this turns out to do just what a
return would do!

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

invoke

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 4
(sub: chinchilla)

������	� � ����	
 ����	��
	
 ���

Why Continuation Passing Scheme?

•Parrot has a lot of context information to
save; continuations capture all of it neatly.

•No concerns about over-flowing the stack or
over-writing return addresses.

•Sounds expensive, but can copy contexts
lazily (if the return continuation becomes a
full continuation), so actually quite cheap.

•Tail calls easy – just pass on the already
taken return continuation.

������	� � ����	
 ����	��
	
 ���

Memory Management

•During their execution, programs allocate
memory for storing working data in.

•Often this memory is only used for a short
amount of time.

•There is only a finite amount of memory
available to use, so programs need to free up
memory that is no longer being used.

•Traditionally programs did this themselves,
e.g. through malloc() and free() in C.

������	� � ����	
 ����	��
	
 ���

What is GC (Garbage Collection) and why?

•Garbage collection systems automate the
freeing of memory when it is no longer in use.

•The programmer is no longer responsible for
freeing memory meaning:

•No memory leaks.

•No chance of accidentally freeing things
that are still in use.

•Faster development.

������	� � ����	
 ����	��
	
 ���

What is reference counting?

•An approach to garbage collection, used in
Perl 5 but not Parrot.

•Every object has a reference count – a value
that keeps track of the number of variables
and other objects that refer to that object.

•When the reference count reaches zero,
there is no way the object could be accessed,
so it is no longer in use, therefore it can be
freed.

������	� � ����	
 ����	��
	
 ���

Why Parrot isn’t using reference counting

•Very easy to forget to increment or
decrement the reference count as needed.

•Garbage collection complexity spread
across the entire code base.

•Circular data structures never get freed as
their reference count never reaches zero.

A B

������	� � ����	
 ����	��
	
 ���

How does Parrot do GC?

•Parrot knows the locations of all objects that
are eligible for GC (PMCs and strings).

•These are allocated out of memory pools.

•GC runs when all memory in the pools is
allocated to see if some can be freed rather
than growing the pool or when the program
requests it to (and maybe in some other
cases).

•Split up into two steps: DOD and sweep.

������	� � ����	
 ����	��
	
 ���

Dead Object Detection (DOD)

•Initially consider all objects dead (that is,
unreachable).

A

B

C

D

E

F

������	� � ����	
 ����	��
	
 ���

Dead Object Detection (DOD)

•Mark any objects that are referenced from
Parrot registers as alive.

P0 P1 P2 P3

E
A

B

C

D

E

F

������	� � ����	
 ����	��
	
 ���

Dead Object Detection (DOD)

•Look at the system stack for the Parrot VM
and mark referenced objects alive.

P0 P1 P2 P3

E
A

B

C

D

E

F

F

������	� � ����	
 ����	��
	
 ���

Dead Object Detection (DOD)

•Finally, transitively mark objects referenced
by live objects as alive.

P0 P1 P2 P3

E
A

B

C

D

E

F

F

������	� � ����	
 ����	��
	
 ���

Sweep

•Objects that were not marked alive can thus
have the memory associated with them freed.

•Finalizers (program level clean-up) and
destructors (VM level clean-up) will be called
before the object’s memory is freed.

A

B

C

������	� � ����	
 ����	��
	
 ���

Why does Parrot do GC this way?

•Complexity of GC contained in a small part
of the code base, not spread throughout it,
thus simpler to debug and smaller code.

•Better performance – no ref counts to ++/--

•Circular data structures no longer a problem.

•Separate DOD and sweep stages aid multi-
threading performance – sweep unlikely to
need any locks.

������	� � ����	
 ���� ��
	
 ���

Where is Parrot’s GC at?

•It works!

•New bugs in the GC system occasionally
discovered but for the most part it’s stable.

•Generational and incremental GC schemes
have been implemented, though are not used
in a default Parrot build.

•A thread aware GC has been implemented
but is in a branch and is so far unused.

������	� � ����	
 ����	��
	
 ���

How will Parrot support concurrency?

•Threads will be implemented using the
operating system’s thread support.

•The OS can schedule threads on multiple
CPUs, which will be really important soon.

•Concurrency control with STM (Software
Transactional Memory).

•Like transactions in databases, but much
more lightweight; STM is highly scalable
and provides a good programmer model.

������	� � ����	
 ���� ��
	
 ���

Where is Parrot’s concurrency support at?

•Threads are implemented on a number of
platforms and basically work.

•Parrot threads are reported to be much more
lightweight than Perl 5’s ithreads.

•STM not implemented at all in Parrot yet, but
it is in The Plans. Currently some more
primitive locking mechanisms are in place.

•The specification for concurrency needs an
overhaul and updating to account for STM.

������	� � ����	
 ���� ��
	
 ���

Other things that need work include…

•The I/O subsystem will be presented as a
number of PMCs, but at the moment many
operations are Parrot instructions and some
things are very likely just not implemented.

•Events and asynchronous I/O need to be
fully specified and implemented.

•There is a specification for the security
model, but it is marked as a draft and not
implemented yet.

������	� � ����	
 ���� ��
	
 ���

Other things that need work include…

•The Parrot compiler tool chain; the Parrot
Grammar Engine is coming along well, and a
Tree Transformation Engine is in the works.
A preliminary Parrot AST is implemented.

•Finalising the specification and
implementation of namespaces and
exceptions and objects .

•Character set support is coming along, but
there’s more to do.

������	� � ����	
 ����	��
	
 ���

Conclusion

•Parrot can do a lot already.

•Equally, Parrot still has some way to go.

•Parrot is innovative and not just a .NET or
JVM clone.

•Parrot will make things better for Perl users.

•Parrot is fun!

•Any questions?

