## Mathematical Expression Handling With Perl



## Jonathan Worthington YAPC::EU::2005

## Mathematical Expression Handling

## Overview

This talk looks at a number of issues relating to working with math expressions in Perl.
-Analytical vs. numerical methods
-Ways of representing expressions
-The Math::Calculus::Expression module

- Modules implementing differentiation,

Newton Raphson and Taylor series.
-Expression equivalence

## Mathematical Expression Handling

## Analytical vs. Numerical

What's the difference?
-Analytical methods work with the expressions themselves, a bit like when you are doing algebra or calculus on paper. The result could be another expression.

- Numerical methods evaluate expressions and then work with the numbers. The result will always be a number.


## Mathematical Expression Handling

## Analytical vs. Numerical

Why might an analytical method be useful?
-It can potentially give an exact result by avoiding floating point calculations that a numerical method would have to do.

- It can give a more general result numerical ones are often specific to a certain problem.
-Good for checking work done by hand or even automating it.


## Mathematical Expression Handling

## Analytical vs. Numerical

When are analytical methods likely not useful?
-When performance matters
-When a numerical method is sufficient for the task at hand

Sometimes a mixture of the two is called for.
-A program that takes an expression from a user needs to parse and evaluate it.
-A numerical method may then be used.

## Mathematical Expression Handling

## Expression Representation

On paper, expressions are written in mathematical notation.

$$
\cos \left(\frac{\exp \left(a^{2}-x^{2}\right)}{x+2 a}\right)
$$

This is usually translated to a form that is easy to type on a standard keyboard using * for multiplication, / for division and ${ }^{\wedge}$ for powers.

$$
\cos \left(\exp \left(a^{\wedge} 2-x^{\wedge} 2\right) /(x+2 * a)\right)
$$

## Mathematical Expression Handling

## Expression Representation

The modules discussed in this article accept and return expressions in a textual form (the second one shown on the previous page).
-Perl is great at manipulating text, so how about performing the operations on expressions by
 doing a series of string manipulations?

## Mathematical Expression Handling

## Expression Representation

Manipulating expressions while in textual form turned out to be a Bad Idea™.
-Much of Perl's strength with handling text comes through its regex support.
-Regexes can parse more than just regular languages, but they are still very much rooted in regular languages.
-Mathematical expressions are not a regular language (arbitrarily nested brackets).

## Mathematical Expression Handling

## Expression Representation

## Manipulating expressions as text soon led to hard to read code and a very fragile system that was difficult to build on.



```
#These are instances of x or a linear function of x raised to a power.
if ($element =~ /^(-?)([.\w]*)$variable([.\w]*)$/) {
    #kx goes to k
    $element = $1 . ("$2$3" || 1);
} elsif ($element =~ /^(-?)([.\w]*) $variable\^(\-?\d+\.?\d*)$/) {
    #ax^n goes to anx^(n-1)
    $element = "$1$2" . ($2 ? '*' . $3 : $3) . $variable . '^' . ($3 - 1);
} elsif ($element =~ /^(-?) ([.\w]*)\(([+\-]?[.\w]*)$variable([.\w]*[+\-]?[.\w]*)\)\^([+\-
]?[.\w]+)$/) {
    #a(bx+c)^n goes to abn (bx-c)^ (n-1)
    my $power = $5;
    $element = "$1$2*$power*$3($3$variable$4)^" . ( $power =~ /^ [.\d]+$/ ? $power - 1 :
"($power-1) ");
```


## Mathematical Expression Handling

## Expression Representation

The solution is to use a different internal representation.
-Write a routine that converts the user-visible format into the internal representation.

- You could think of this as a parser.
-Write a routine that converts the internal representation into the user-visible one.
- You could think of this as a pretty-printer.


## Mathematical Expression Handling

## Expression Representation

I chose to represent expressions using non-strict binary trees.

The tree to the right represents:
$\cos \left(\exp \left(\mathrm{a}^{\wedge} 2-x^{\wedge} 2\right) /(x+2 * a)\right)$


A node of the tree can either be a constant, a variable, an operator (+, $\left.-,{ }^{*}, /,{ }^{\wedge}\right)$ or a function.

## Mathematical Expression Handling

## Expression Representation

Why is the tree representation a good idea?

- No need for code manipulating the tree to worry about precedence (or bracketing) - it's encoded as tree depth.
-Many problems (evaluation, differentiation) are neatly represented using recursion, and recursion is cheap on a tree structure such as this one.
-Trivial to extract sub-expressions.


## Mathematical Expression Handling

## Expression Representation

There are a few things to be aware of with regard to the tree representation.
-White space will not be preserved.
-Extraneous brackets will not be preserved.
-The meaning of the expression will be preserved.


## Mathematical Expression Handling

## Math::Calculus::Expression

This OO module provides some of the most basic expression manipulation functionality:
-Taking an expression as text, parsing it and building the internal expression tree
-Turning the expression tree back into text
-Evaluating the expression (to a number)
-Doing some basic simplifications
-Testing if two internal representations match

## Mathematical Expression Handling

## Math::Calculus::Expression

## Here's an example of using the module.

```
# Create an expression object.
use Math::Calculus::Expression;
my $exp = Math::Calculus::Expression->new;
```

\# Set an expression and set its variable.
\$exp->setExpression('2*x^2 + sin(2*t - x) + 10');
\$exp->addVariable('x');
\# Evaluate it with $x=4$, $t=2$.
my \$val = \$exp->evaluate (
x => 4,
t => 2
);
print "Evaluates to \$val"; \# 42

## Mathematical Expression Handling

## Math::Calculus::Expression

If you call a method not implemented by this module (or the subclass of it that you're using) then it attempts to be helpful.
-By convention, the most significant method a module adds will have the same name as the module itself, apart from an initial lowercase letter.
-So the differentiate method is implemented in Math::Calculus::Differentiate.

## Mathematical Expression Handling

## Math::Calculus::Expression

This standard naming scheme makes it straightforward to Do The Right Thing.
-AUTOLOAD is implemented. It takes the name of the method being called and tries to load the appropriate module.
-If the module can be loaded, a call is made into that module, passing the current expression object into it.
-Basically fakes runtime class composition.

## Mathematical Expression Handling

## Math::Calculus::Expression

The binary tree is actually made up of hashes with keys operation, operand1 and operand2.
-Branches are simply hashrefs.

- At the bottom of the tree, instead of having a hashref to another node, a letter or number is stored. Thus it is possible to check if the branch is a subtree simply by using ref.
- Not the cheapest solution, but readable and allows the tree to be augmented with ease.


## Mathematical Expression Handling

## Math::Calculus::Differentiate

The derivative of an expression describes its gradient - how steep the curve is at each point.
-The black line is the function $x^{2}$.
-The blue line is the gradient of $x^{2}$, which works out to be $2 x$.


## Mathematical Expression Handling

## Math::Calculus::Differentiate

This module implements differentiation and is a subclass of Math::Calculus::Expression.

- It adds the differentiate method, which transforms the currently represented expression into its derivative.
-At this time the module only does partial differentiation - that is, differentiation with respect to a single variable. Other variables will be treated like constants.


## Mathematical Expression Handling

## Math::Calculus::Differentiate

\# Create an expression object, set up an example
\# expression and set its variable.
use Math: : Calculus: :Differentiate;
my \$exp = Math: :Calculus: :Differentiate->new;
\$exp->setExpression ('2*x^2 $+\sin (2 * t-x)+10 ')$;
\$exp->addVariable('x');
\# Differentiate with respect to $x$. This prints:
\# $2 * 2 * 1 * x^{\wedge}(2-1)+(2 * t-1) * \cos (2 * t-x)+0$
\$exp->differentiate('x');
print \$exp->getExpression . "\n";
\# If we simplify it, things get cleaner. This prints:
\# $4 * x+(2 * t-1) * \cos (2 * t-x)$
\$exp->simplify.
print \$exp->getExpression . "\n";

## Mathematical Expression Handling

## Math::Calculus::Differentiate

Differentiation is implemented recursively.
-Feels quite natural - maps well to the chain rule and its results.
-For example, the rule for differentiating an expression, e, to a constant power involves differentiating $\boldsymbol{e}$ itself.

$$
\frac{d}{d x}\left[(e)^{n}\right]=n \frac{d}{d x}[e](e)^{(n-1)}
$$

-Example code can be found in the paper.

## Mathematical Expression Handling

## Math::Calculus::NewtonRaphson

This module implements the Newton Raphson method.

- Newton Raphson is a numerical method for finding a solution to an equation.
-Must be in the form $f(x)=0$, where $f(x)$ is

an expression (which we can represent).


## Mathematical Expression Handling

## Math::Calculus::NewtonRaphson

Newton Raphson is an iterative method.
-Takes an initial estimate of the result, feeds it into the iteration and gets a better estimate.
-Usually a stable iteration with quadratic convergence.
-The iteration involves the derivative of the function - which we can find analytically now!

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

## Mathematical Expression Handling

## Math::Calculus::NewtonRaphson

```
Here's an example of using the module to solve
x^x + sin}(\mp@subsup{2}{}{*}x)=7
# Create an expression object.
use Math::Calculus::NewtonRaphson;
my $exp = Math::Calculus::NewtonRaphson->new;
```

\# Set an expression and set its variable.
\$exp->setExpression('x^x + sin(2*x) - 7');
\$exp->addVariable('x');
\# Attempt to solve it with initial guess 3.
my \$sol = \$exp->newtonRaphson('x', 3);
print "Solution is \$sol\n"; \# 2.38828587710838

## Mathematical Expression Handling

## Expression Equivalence

Two mathematical expressions are equivalent if they are equal when evaluated for all possible values of their variable(s).
-Essentially, if two expressions are equivalent, they can always be used in place of each other.
-Testing whether the two expressions evaluate to the same thing for every value is infeasible - need something else.

## Mathematical Expression Handling

## Expression Equivalence

Does having the same internal representation say anything about equivalence?

- Yes! Obviously, two expressions with the same representation are equivalent
-Cheap to implement.
-However, it is possible for two expressions with different representations to be equivalent, e.g. 2*x and $x+x$ have different internal representations but are equivalent.


## Mathematical Expression Handling

## Expression Equivalence

What about re-arranging the expression using a certain set of rules?
-An ordering scheme can help with identifying, for example, " $x+2$ " and " $2+x$ " as equivalent. Apply from the bottom of the tree.
-To identify " $(x+1)^{*}(x-1)$ " and " $x^{\wedge} 2-1$ " as equivalent, multiply out brackets and simplify.
-Despite growing complexity, still has no chance of determining $\sin (x) / \cos (x)=\tan (x)$.

## Mathematical Expression Handling

## Expression Equivalence

What we really want is to find a canonical form for representing expressions.
-A canonical form is one where all equivalent expressions have the same representation.
-A Taylor Series is such a form.
-Represents any continuous, differentiable expression as an infinite polynomial.

- $n^{\text {th }}$ coefficient related to $\mathrm{n}^{\text {th }}$ derivative.


## Mathematical Expression Handling

## Expression Equivalence

We can use Taylor Series to investigate equivalence.
-If the Taylor Series of two expressions are equivalent, it can be said that the expressions themselves are equivalent.
-As the coefficients are found by evaluating the expression or its derivatives at a fixed point, two equivalent expressions will have the same Taylor series.

## Mathematical Expression Handling

## Expression Equivalence

Taylor series are infinite.

- Obviously cannot compute every co-efficient - would take infinite time and space.
- Instead, compute and compare the first N coefficients of the Taylor series.
- Size of N determines how accurate the equivalence testing needs to be.


## Mathematical Expression Handling

## Expression Equivalence

It isn't all plain sailing. Evaluating a large number of coefficients becomes expensive.
-Computing many derivatives is time consuming.
-For some functions the size of the derivative expression, under the currently available expression simplifier on CPAN at the time of writing, blows up exponentially.
-Also need to compute fast-growing factorial.

## Mathematical Expression Handling

## Expression Equivalence

However, it works!
-An implementation is available now on
CPAN as Math::Calculus::TaylorEquivalent.
-It spots all of the equivalences mentioned in this talk so far, including the trigonometric identity.
-It was also very simple to write, especially having a TaylorSeries module already written.

## Mathematical Expression Handling

## Conclusions

- Only a handful of people here will actually need to do analytical manipulation of mathematical expression.
-However, some of the concepts are very portable to other fields of application particularly the idea of a separate internal representation.
-Working web front ends to these modules on my site: http://www.jwcs.net/~jonathan/

