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Overview

This talk looks at a number of issues relating 
to working with math expressions in Perl.

•Analytical vs. numerical methods

•Ways of representing expressions

•The Math::Calculus::Expression module

•Modules implementing differentiation, 
Newton Raphson and Taylor series.

•Expression equivalence
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Analytical vs. Numerical

What’s the difference?

•Analytical methods work with the 
expressions themselves, a bit like when 
you are doing algebra or calculus on paper. 
The result could be another expression.

•Numerical methods evaluate expressions 
and then work with the numbers. The result 
will always be a number.
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Analytical vs. Numerical

Why might an analytical method be useful?

•It can potentially give an exact result by 
avoiding floating point calculations that a 
numerical method would have to do.

•It can give a more general result –
numerical ones are often specific to a 
certain problem.

•Good for checking work done by hand or 
even automating it.
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Analytical vs. Numerical

When are analytical methods likely not useful?

•When performance matters

•When a numerical method is sufficient for 
the task at hand

Sometimes a mixture of the two is called for.

•A program that takes an expression from a 
user needs to parse and evaluate it.

•A numerical method may then be used.



�����������	
���������
� ���	���

Expression Representation

On paper, expressions are written in 
mathematical notation.

This is usually translated to a form that is easy 
to type on a standard keyboard using * for 
multiplication, / for division and ^ for powers.

cos(exp(a^2 - x^2) / (x + 2*a))
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Expression Representation

The modules discussed in this article accept 
and return expressions in a textual form (the 
second one shown on the previous page).

•Perl is great at
manipulating text,
so how about
performing the
operations on
expressions by 
doing a series of string manipulations?
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Expression Representation

Manipulating expressions while in textual form 
turned out to be a Bad Idea™.

•Much of Perl’s strength with handling text 
comes through its regex support.

•Regexes can parse more than just regular 
languages, but they are still very much rooted 
in regular languages.

•Mathematical expressions are not a regular 
language (arbitrarily nested brackets).
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Expression Representation

Manipulating expressions as
text soon led to hard to read
code and a very fragile system
that was difficult to build on.
#These are instances of x or a linear function of x raised to a power.
if ($element =~ /^(-?)([.\w]*)$variable([.\w]*)$/) {

#kx goes to k
$element = $1 . ("$2$3" || 1);

} elsif ($element =~ /^(-?)([.\w]*)$variable\^(\-?\d+\.?\d*)$/) {
#ax^n goes to anx^(n-1)
$element = "$1$2" . ($2 ? '*' . $3 : $3) . $variable . '^' . ($3 - 1);

} elsif ($element =~ /^(-?)([.\w]*)\(([+\-]?[.\w]*)$variable([.\w]*[+\-]?[.\w]*)\)\^([+\-
]?[.\w]+)$/) {

#a(bx+c)^n goes to abn(bx-c)^(n-1)
my $power = $5;
$element = "$1$2*$power*$3($3$variable$4)^" . ( $power =~ /^[.\d]+$/ ? $power - 1 : 

"($power-1)");



�����������	
���������
� ���	���

Expression Representation

The solution is to use a different internal 
representation.

•Write a routine that converts the user-visible 
format into the internal representation.

•You could think of this as a parser.

•Write a routine that converts the internal 
representation into the user-visible one.

•You could think of this as a pretty-printer.
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Expression Representation

I chose to represent
expressions using
non-strict binary trees.

The tree to the right
represents:

cos(exp(a^2 - x^2) / (x + 2*a))

A node of the tree can either be a constant, a 
variable, an operator (+, -, *, /, ^) or a function. 
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Expression Representation

Why is the tree representation a good idea?

•No need for code manipulating the tree to 
worry about precedence (or bracketing) – it’s 
encoded as tree depth.

•Many problems (evaluation, differentiation) 
are neatly represented using recursion, and 
recursion is cheap on a tree structure such 
as this one.

•Trivial to extract sub-expressions.
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Expression Representation

There are a few things to be aware of with 
regard to the tree representation.

•White space will not
be preserved.

•Extraneous brackets 
will not be preserved.

•The meaning of the
expression will be 
preserved.
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Math::Calculus::Expression

This OO module provides some of the most 
basic expression manipulation functionality:

•Taking an expression as text, parsing it and 
building the internal expression tree

•Turning the expression tree back into text

•Evaluating the expression (to a number)

•Doing some basic simplifications

•Testing if two internal representations match
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Math::Calculus::Expression

Here’s an example of using the module.
# Create an expression object.
use Math::Calculus::Expression;
my $exp = Math::Calculus::Expression->new;

# Set an expression and set its variable.
$exp->setExpression('2*x^2 + sin(2*t - x) + 10');
$exp->addVariable('x');

# Evaluate it with x = 4, t = 2.
my $val = $exp->evaluate(

x => 4,
t => 2

);
print "Evaluates to $val"; # 42
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Math::Calculus::Expression

If you call a method not implemented by this 
module (or the subclass of it that you’re using) 
then it attempts to be helpful.

•By convention, the most significant method a 
module adds will have the same name as the 
module itself, apart from an initial lowercase 
letter.

•So the differentiate method is implemented 
in Math::Calculus::Differentiate.
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Math::Calculus::Expression

This standard naming scheme makes it 
straightforward to Do The Right Thing.

•AUTOLOAD is implemented. It takes the 
name of the method being called and tries to 
load the appropriate module.

•If the module can be loaded, a call is made 
into that module, passing the current 
expression object into it.

•Basically fakes runtime class composition.
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Math::Calculus::Expression

The binary tree is actually made up of hashes 
with keys operation, operand1 and operand2.

•Branches are simply hashrefs.

•At the bottom of the tree, instead of having a
hashref to another node, a letter or number is 
stored. Thus it is possible to check if the 
branch is a subtree simply by using ref.

•Not the cheapest solution, but readable and 
allows the tree to be augmented with ease.
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Math::Calculus::Differentiate

The derivative of an expression describes its 
gradient - how steep the curve is at each point.

•The black line is
the function x2.

•The blue line is
the gradient of x2,
which works out to
be 2x.
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Math::Calculus::Differentiate

This module implements differentiation and is a 
subclass of Math::Calculus::Expression.

•It adds the differentiate method, which 
transforms the currently represented 
expression into its derivative.

•At this time the module only does partial 
differentiation - that is, differentiation with 
respect to a single variable. Other variables 
will be treated like constants.
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Math::Calculus::Differentiate
# Create an expression object, set up an example
# expression and set its variable.
use Math::Calculus::Differentiate;
my $exp = Math::Calculus::Differentiate->new;
$exp->setExpression('2*x^2 + sin(2*t - x) + 10');
$exp->addVariable('x');

# Differentiate with respect to x. This prints:
# 2*2*1*x^(2 - 1) + (2*t - 1)*cos(2*t - x) + 0
$exp->differentiate('x');
print $exp->getExpression . "\n";

# If we simplify it, things get cleaner. This prints:
# 4*x + (2*t - 1)*cos(2*t - x)
$exp->simplify.
print $exp->getExpression . "\n";
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Math::Calculus::Differentiate

Differentiation is implemented recursively.

•Feels quite natural – maps well to the chain 
rule and its results.

•For example, the rule for differentiating an 
expression, e, to a constant power involves 
differentiating e itself.

•Example code can be found in the paper.
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Math::Calculus::NewtonRaphson

This module implements the Newton Raphson 
method.

•Newton Raphson is a
numerical method for
finding a solution to an
equation.

•Must be in the form
f(x) = 0, where f(x) is
an expression (which we can represent).
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Math::Calculus::NewtonRaphson

Newton Raphson is an iterative method.

•Takes an initial estimate of the result, feeds 
it into the iteration and gets a better estimate.

•Usually a stable iteration with quadratic 
convergence.

•The iteration involves the derivative of the 
function – which we can find analytically now!
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Math::Calculus::NewtonRaphson

Here’s an example of using the module to solve 
x^x + sin(2*x) = 7.
# Create an expression object.
use Math::Calculus::NewtonRaphson;
my $exp = Math::Calculus::NewtonRaphson->new;

# Set an expression and set its variable.
$exp->setExpression('x^x + sin(2*x) - 7');
$exp->addVariable('x');

# Attempt to solve it with initial guess 3.
my $sol = $exp->newtonRaphson('x', 3);
print "Solution is $sol\n"; # 2.38828587710838
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Expression Equivalence

Two mathematical expressions are equivalent if 
they are equal when evaluated for all possible 
values of their variable(s).

•Essentially, if two expressions are 
equivalent, they can always be used in place 
of each other.

•Testing whether the two expressions 
evaluate to the same thing for every value is 
infeasible – need something else.
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Expression Equivalence

Does having the same internal representation 
say anything about equivalence?

•Yes! Obviously, two expressions with the 
same representation are equivalent

•Cheap to implement.

•However, it is possible for two expressions 
with different representations to be 
equivalent, e.g. 2*x and x + x have different 
internal representations but are equivalent.
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Expression Equivalence

What about re-arranging the expression using a 
certain set of rules?

•An ordering scheme can help with 
identifying, for example, “x+2” and “2+x” as 
equivalent. Apply from the bottom of the tree.

•To identify “(x + 1)*(x - 1)” and “x^2 – 1” as 
equivalent, multiply out brackets and simplify.

•Despite growing complexity, still has no 
chance of determining sin(x)/cos(x) = tan(x).
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Expression Equivalence

What we really want is to find a canonical form 
for representing expressions.

•A canonical form is one where all equivalent 
expressions have the same representation.

•A Taylor Series is such a form.

•Represents any continuous, differentiable 
expression as an infinite polynomial.

•nth coefficient related to nth derivative.
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Expression Equivalence

We can use Taylor Series to investigate 
equivalence.

•If the Taylor Series of two expressions are 
equivalent, it can be said that the 
expressions themselves are equivalent.

•As the coefficients are found by evaluating 
the expression or its derivatives at a fixed 
point, two equivalent expressions will have 
the same Taylor series.
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Expression Equivalence

Taylor series are infinite.

•Obviously cannot compute every co-efficient 
– would take infinite time and space.

•Instead, compute and compare the first N 
coefficients of the Taylor series.

•Size of N determines how accurate the 
equivalence testing needs to be.
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Expression Equivalence

It isn’t all plain sailing. Evaluating a large 
number of coefficients becomes expensive.

•Computing many derivatives is time 
consuming.

•For some functions the size of the derivative 
expression, under the currently available 
expression simplifier on CPAN at the time of 
writing, blows up exponentially.

•Also need to compute fast-growing factorial.
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Expression Equivalence

However, it works!

•An implementation is available now on 
CPAN as Math::Calculus::TaylorEquivalent.

•It spots all of the equivalences mentioned in 
this talk so far, including the trigonometric 
identity.

•It was also very simple to write, especially 
having a TaylorSeries module already 
written.



�����������	
���������
� ���	���

Conclusions

•Only a handful of people here will actually 
need to do analytical manipulation of 
mathematical expression.

•However, some of the concepts are very 
portable to other fields of application –
particularly the idea of a separate internal 
representation.

•Working web front ends to these modules on 
my site: http://www.jwcs.net/~jonathan/ 


