
�����������	
���������

� ���	���
� ���
� ��	

Jonathan Worthington
YAPC::EU::2005

�����������	
���������
� ���	���

Overview

This talk looks at a number of issues relating
to working with math expressions in Perl.

•Analytical vs. numerical methods

•Ways of representing expressions

•The Math::Calculus::Expression module

•Modules implementing differentiation,
Newton Raphson and Taylor series.

•Expression equivalence

�����������	
���������
� ���	���

Analytical vs. Numerical

What’s the difference?

•Analytical methods work with the
expressions themselves, a bit like when
you are doing algebra or calculus on paper.
The result could be another expression.

•Numerical methods evaluate expressions
and then work with the numbers. The result
will always be a number.

�����������	
���������
� ���	���

Analytical vs. Numerical

Why might an analytical method be useful?

•It can potentially give an exact result by
avoiding floating point calculations that a
numerical method would have to do.

•It can give a more general result –
numerical ones are often specific to a
certain problem.

•Good for checking work done by hand or
even automating it.

�����������	
���������
� ���	���

Analytical vs. Numerical

When are analytical methods likely not useful?

•When performance matters

•When a numerical method is sufficient for
the task at hand

Sometimes a mixture of the two is called for.

•A program that takes an expression from a
user needs to parse and evaluate it.

•A numerical method may then be used.

�����������	
���������
� ���	���

Expression Representation

On paper, expressions are written in
mathematical notation.

This is usually translated to a form that is easy
to type on a standard keyboard using * for
multiplication, / for division and ^ for powers.

cos(exp(a^2 - x^2) / (x + 2*a))

�����������	
���������
� ���	���

Expression Representation

The modules discussed in this article accept
and return expressions in a textual form (the
second one shown on the previous page).

•Perl is great at
manipulating text,
so how about
performing the
operations on
expressions by
doing a series of string manipulations?

�����������	
���������
� ���	���

Expression Representation

Manipulating expressions while in textual form
turned out to be a Bad Idea™.

•Much of Perl’s strength with handling text
comes through its regex support.

•Regexes can parse more than just regular
languages, but they are still very much rooted
in regular languages.

•Mathematical expressions are not a regular
language (arbitrarily nested brackets).

�����������	
���������
� ���	���

Expression Representation

Manipulating expressions as
text soon led to hard to read
code and a very fragile system
that was difficult to build on.
#These are instances of x or a linear function of x raised to a power.
if ($element =~ /^(-?)([.\w]*)$variable([.\w]*)$/) {

#kx goes to k
$element = $1 . ("$2$3" || 1);

} elsif ($element =~ /^(-?)([.\w]*)$variable\^(\-?\d+\.?\d*)$/) {
#ax^n goes to anx^(n-1)
$element = "$1$2" . ($2 ? '*' . $3 : $3) . $variable . '^' . ($3 - 1);

} elsif ($element =~ /^(-?)([.\w]*)\(([+\-]?[.\w]*)$variable([.\w]*[+\-]?[.\w]*)\)\^([+\-
]?[.\w]+)$/) {

#a(bx+c)^n goes to abn(bx-c)^(n-1)
my $power = $5;
$element = "$1$2*$power*$3($3$variable$4)^" . ($power =~ /^[.\d]+$/ ? $power - 1 :

"($power-1)");

�����������	
���������
� ���	���

Expression Representation

The solution is to use a different internal
representation.

•Write a routine that converts the user-visible
format into the internal representation.

•You could think of this as a parser.

•Write a routine that converts the internal
representation into the user-visible one.

•You could think of this as a pretty-printer.

�����������	
���������
� ���	���

Expression Representation

I chose to represent
expressions using
non-strict binary trees.

The tree to the right
represents:

cos(exp(a^2 - x^2) / (x + 2*a))

A node of the tree can either be a constant, a
variable, an operator (+, -, *, /, ^) or a function.

�����������	
���������
� ���	���

Expression Representation

Why is the tree representation a good idea?

•No need for code manipulating the tree to
worry about precedence (or bracketing) – it’s
encoded as tree depth.

•Many problems (evaluation, differentiation)
are neatly represented using recursion, and
recursion is cheap on a tree structure such
as this one.

•Trivial to extract sub-expressions.

�����������	
���������
� ���	���

Expression Representation

There are a few things to be aware of with
regard to the tree representation.

•White space will not
be preserved.

•Extraneous brackets
will not be preserved.

•The meaning of the
expression will be
preserved.

�����������	
���������
� ���	���

Math::Calculus::Expression

This OO module provides some of the most
basic expression manipulation functionality:

•Taking an expression as text, parsing it and
building the internal expression tree

•Turning the expression tree back into text

•Evaluating the expression (to a number)

•Doing some basic simplifications

•Testing if two internal representations match

�����������	
���������
� ���	���

Math::Calculus::Expression

Here’s an example of using the module.
Create an expression object.
use Math::Calculus::Expression;
my $exp = Math::Calculus::Expression->new;

Set an expression and set its variable.
$exp->setExpression('2*x^2 + sin(2*t - x) + 10');
$exp->addVariable('x');

Evaluate it with x = 4, t = 2.
my $val = $exp->evaluate(

x => 4,
t => 2

);
print "Evaluates to $val"; # 42

�����������	
���������
� ���	���

Math::Calculus::Expression

If you call a method not implemented by this
module (or the subclass of it that you’re using)
then it attempts to be helpful.

•By convention, the most significant method a
module adds will have the same name as the
module itself, apart from an initial lowercase
letter.

•So the differentiate method is implemented
in Math::Calculus::Differentiate.

�����������	
���������
� ���	���

Math::Calculus::Expression

This standard naming scheme makes it
straightforward to Do The Right Thing.

•AUTOLOAD is implemented. It takes the
name of the method being called and tries to
load the appropriate module.

•If the module can be loaded, a call is made
into that module, passing the current
expression object into it.

•Basically fakes runtime class composition.

�����������	
���������
� ���	���

Math::Calculus::Expression

The binary tree is actually made up of hashes
with keys operation, operand1 and operand2.

•Branches are simply hashrefs.

•At the bottom of the tree, instead of having a
hashref to another node, a letter or number is
stored. Thus it is possible to check if the
branch is a subtree simply by using ref.

•Not the cheapest solution, but readable and
allows the tree to be augmented with ease.

�����������	
���������
� ���	���

Math::Calculus::Differentiate

The derivative of an expression describes its
gradient - how steep the curve is at each point.

•The black line is
the function x2.

•The blue line is
the gradient of x2,
which works out to
be 2x.

�����������	
���������
� ���	���

Math::Calculus::Differentiate

This module implements differentiation and is a
subclass of Math::Calculus::Expression.

•It adds the differentiate method, which
transforms the currently represented
expression into its derivative.

•At this time the module only does partial
differentiation - that is, differentiation with
respect to a single variable. Other variables
will be treated like constants.

�����������	
���������
� ���	���

Math::Calculus::Differentiate
Create an expression object, set up an example
expression and set its variable.
use Math::Calculus::Differentiate;
my $exp = Math::Calculus::Differentiate->new;
$exp->setExpression('2*x^2 + sin(2*t - x) + 10');
$exp->addVariable('x');

Differentiate with respect to x. This prints:
2*2*1*x^(2 - 1) + (2*t - 1)*cos(2*t - x) + 0
$exp->differentiate('x');
print $exp->getExpression . "\n";

If we simplify it, things get cleaner. This prints:
4*x + (2*t - 1)*cos(2*t - x)
$exp->simplify.
print $exp->getExpression . "\n";

�����������	
���������
� ���	���

Math::Calculus::Differentiate

Differentiation is implemented recursively.

•Feels quite natural – maps well to the chain
rule and its results.

•For example, the rule for differentiating an
expression, e, to a constant power involves
differentiating e itself.

•Example code can be found in the paper.

�����������	
���������
� ���	���

Math::Calculus::NewtonRaphson

This module implements the Newton Raphson
method.

•Newton Raphson is a
numerical method for
finding a solution to an
equation.

•Must be in the form
f(x) = 0, where f(x) is
an expression (which we can represent).

�����������	
���������
� ���	���

Math::Calculus::NewtonRaphson

Newton Raphson is an iterative method.

•Takes an initial estimate of the result, feeds
it into the iteration and gets a better estimate.

•Usually a stable iteration with quadratic
convergence.

•The iteration involves the derivative of the
function – which we can find analytically now!

�����������	
���������
� ���	���

Math::Calculus::NewtonRaphson

Here’s an example of using the module to solve
x^x + sin(2*x) = 7.
Create an expression object.
use Math::Calculus::NewtonRaphson;
my $exp = Math::Calculus::NewtonRaphson->new;

Set an expression and set its variable.
$exp->setExpression('x^x + sin(2*x) - 7');
$exp->addVariable('x');

Attempt to solve it with initial guess 3.
my $sol = $exp->newtonRaphson('x', 3);
print "Solution is $sol\n"; # 2.38828587710838

�����������	
���������
� ���	���

Expression Equivalence

Two mathematical expressions are equivalent if
they are equal when evaluated for all possible
values of their variable(s).

•Essentially, if two expressions are
equivalent, they can always be used in place
of each other.

•Testing whether the two expressions
evaluate to the same thing for every value is
infeasible – need something else.

�����������	
���������
� ���	���

Expression Equivalence

Does having the same internal representation
say anything about equivalence?

•Yes! Obviously, two expressions with the
same representation are equivalent

•Cheap to implement.

•However, it is possible for two expressions
with different representations to be
equivalent, e.g. 2*x and x + x have different
internal representations but are equivalent.

�����������	
���������
� ���	���

Expression Equivalence

What about re-arranging the expression using a
certain set of rules?

•An ordering scheme can help with
identifying, for example, “x+2” and “2+x” as
equivalent. Apply from the bottom of the tree.

•To identify “(x + 1)*(x - 1)” and “x^2 – 1” as
equivalent, multiply out brackets and simplify.

•Despite growing complexity, still has no
chance of determining sin(x)/cos(x) = tan(x).

�����������	
���������
� ���	���

Expression Equivalence

What we really want is to find a canonical form
for representing expressions.

•A canonical form is one where all equivalent
expressions have the same representation.

•A Taylor Series is such a form.

•Represents any continuous, differentiable
expression as an infinite polynomial.

•nth coefficient related to nth derivative.

�����������	
���������
� ���	���

Expression Equivalence

We can use Taylor Series to investigate
equivalence.

•If the Taylor Series of two expressions are
equivalent, it can be said that the
expressions themselves are equivalent.

•As the coefficients are found by evaluating
the expression or its derivatives at a fixed
point, two equivalent expressions will have
the same Taylor series.

�����������	
���������
� ���	���

Expression Equivalence

Taylor series are infinite.

•Obviously cannot compute every co-efficient
– would take infinite time and space.

•Instead, compute and compare the first N
coefficients of the Taylor series.

•Size of N determines how accurate the
equivalence testing needs to be.

�����������	
���������
� ���	���

Expression Equivalence

It isn’t all plain sailing. Evaluating a large
number of coefficients becomes expensive.

•Computing many derivatives is time
consuming.

•For some functions the size of the derivative
expression, under the currently available
expression simplifier on CPAN at the time of
writing, blows up exponentially.

•Also need to compute fast-growing factorial.

�����������	
���������
� ���	���

Expression Equivalence

However, it works!

•An implementation is available now on
CPAN as Math::Calculus::TaylorEquivalent.

•It spots all of the equivalences mentioned in
this talk so far, including the trigonometric
identity.

•It was also very simple to write, especially
having a TaylorSeries module already
written.

�����������	
���������
� ���	���

Conclusions

•Only a handful of people here will actually
need to do analytical manipulation of
mathematical expression.

•However, some of the concepts are very
portable to other fields of application –
particularly the idea of a separate internal
representation.

•Working web front ends to these modules on
my site: http://www.jwcs.net/~jonathan/

