
����������	
��

� ��� ������� ���

Jonathan Worthington
YAPC::EU::2005

����������	
���� ��� ������� ���

Overview

This talk is basically split into two parts.

•The Academic Bit

•What is security?

•The economics of security

•The Practical Bit

•A range of common exploits

•How to protect against them

����������	
���� ��� ������� ���

What is security?

Security is about protecting assets from a
malicious and intelligent adversary.

•Examples of assets: a customer database,
corporate secrets or internal data, posts in
the guest book on a personal site.

•Examples of adversaries: a malicious
competitor, a SPAMmer, an angsty
teenager who thinks their skillz are 1337.

����������	
���� ��� ������� ���

What is being protected?

After identifying assets, identify what it is
about them that needs protecting.

•Secrecy: protection against unauthorised
access, viewing, copying, etc.

•Integrity: Protection against unauthorised
modification and deletion.

•Availability: Protection against attacks
that render the asset unusable.

����������	
���� ��� ������� ���

Security is relative

Even if your web
application were to be
perfectly secure, there
could be security holes on
other parts of the stack
(operating system, web
server, database server,
etc).

����������	
���� ��� ������� ���

Security is relative

Even if the entire web app.
stack is secure, there’s still:

•Social engineering

•One study found a scary
number of people would
reveal their password for
chocolate!

•If chocolate won’t work,
a financial bribe may…

����������	
���� ��� ������� ���

Security is relative

Even if the entire web app. stack is secure,
there’s still:

•Physical Security

•If you have physical access to a
machine, you’ve a lot more possibilities.

•Social engineering is one path to
physical access.

����������	
���� ��� ������� ���

The Economics Of Security

The bad news: The odds are stacked
against you.

•You have to find every security hole in the
web system and deal with it.

•An attacker need only find one that is
suitable for the kind of attack they want to
mount.

����������	
���� ��� ������� ���

The Economics Of Security

The good news: The attacker has limited
resources.

A system could be
considered “secure
enough” if an
attacker has
expended all of
their resources before they succeed in
compromising your system.

����������	
���� ��� ������� ���

The Economics Of Security

The resources an attacker has are usually
related to the value of the asset that is being
protected.

•It is unlikely anyone is going to spend an
entire month trying to deface the guest
book on your personal home page.

•It is also unlikely that an attacker looking
to steal a competitor's customer database
is going to give up after 10 minutes.

����������	
���� ��� ������� ���

The Practical Bit

Usually you present a problem, then its
solution. However, we’re going to look at a
solution first, then some attack vectors,
because…

•The vast majority of security issues I’m
about to present have the same solution.

•The solution sounds boring, so I’ll present
it while everyone is still awake. :-)

����������	
���� ��� ������� ���

Validation

Validation involves…

•Checking that data given as input to the
web application contains what was
expected.

•Appropriately handling the situation when
it does not.

Lack of or insufficient validation is likely
the single largest cause of exploits in web
applications.

����������	
���� ��� ������� ���

Doing Validation Right

As a general rule, do positive validation.

•Check that the data contains what is
expected, rather than checking if it
contains things that could be dangerous.

•That way, the worst case is that something
that should have been accepted is rejected.

•With negative validation, it is easy to miss
something potentially dangerous.

����������	
���� ��� ������� ���

Doing Validation Right

Example: positive vs. negative validation
Good - we only accept $phone if it contains things
that are valid in a phone number.
if ($phone !~ /^[\d\s()-]+$/) {

error();
}

Bad - we try and protect against insertion of HTML
tags to avoid XSS attacks, but potentially miss
other problems with the data.
if ($phone =~ /<|>/) {

error();
}

����������	
���� ��� ������� ���

The Perl Angle On Validation

Perl makes validation quick and easy.

•For hand-made validation code, regular
expressions are very useful, and quicker to
use in Perl than in many other languages.

•There are some useful CPAN Modules:

•HTML::FormValidator

•Data::Validate

•…

����������	
���� ��� ������� ���

The Perl Angle On Validation

Perl can also run in taint mode.

•Here, all data from outside the program is
considered tainted. Copying data from a
tainted variables will taint the destination.

•You have to validate, using a regex, to
untaint a variable.

•Using a tainted variable in unsafe
operations is an error.

����������	
���� ��� ������� ���

Sanitizing Input

This involves making user input safe when it
would otherwise fail validation.

•On a message board discussing maths,
the < and > characters may be used
frequently.

•These probably should not be accepted as
they can allow for a XSS attack (more on
XSS attacks coming later).

����������	
���� ��� ������� ���

Sanitizing Input

We transform dangerous input into something
safe.

•In this case, we can turn all < into < and all
> into > to make the input safe.
$input =~ s/</</g;
$input =~ s/>/>/g;

•This can be done on all form data to make
user input safer “by default”.

•Sanitized doesn’t imply no validation needed.

����������	
���� ��� ������� ���

Thinking Outside The Browser

Client side validation is of little help when it
comes to server side security.

•JavaScript can be turned off easily.

•Custom requests can be assembled,
bypassing any browser constraints.

•For example, even if the browser shows a
single line text entry field, a custom request
could contain line breaks.

����������	
���� ��� ������� ���

The Exploits

The following slides present some of the most
common exploits that web applications are
vulnerable to.

•This will not be anything close to a complete
list.

•Validation will come up as The Solution™
again and again.

����������	
���� ��� ������� ���

Injection Attacks

An injection attack takes advantage of a lack of
validation to change the behaviour of a web
application.

•Usually these attacks take advantage of
certain characters having special meanings.

•For example, the new line character has
special meaning in a mail header – it denotes
that another header follows.

����������	
���� ��� ������� ���

SQL Injection Attacks

Many web applications use an SQL database
for data storage.

•SQL is a language, and like any other
language certain characters have special
meanings.

•Not sanitizing or validating input that is
placed into an SQL query potentially enables
an attacker to change the meaning of a
query.

����������	
���� ��� ������� ���

SQL Injection Attacks

Imagine $form{‘pass’} is not validated or
sanitized and is used as follows.
my $sth = $dbh->prepare(“

SELECT userid, usertype
FROM users
WHERE login = '$form{'login'}‘

AND pass = '$form{'pass'}‘
");
$sth->execute;
if ($sth->rows == 0) {

Invalid login...give error message.
} else {

Valid login...fetch details, etc.
}

����������	
���� ��� ������� ���

SQL Injection Attacks

What happens if the user was to enter the
following value for $form{‘pass’}?

' OR '' = '

����������	
���� ��� ������� ���

SQL Injection Attacks

The SQL query will look like this:
SELECT userid, usertype
FROM users
WHERE login = '$form{'login'}‘

AND pass = '' OR '' = '‘

•The WHERE clause will always evaluate to
true!

•You will log in as the first user in the table.

•In multi-user systems, how often is the first
account in the table an administrative one?

����������	
���� ��� ������� ���

Preventing SQL Injection Attacks

One solution is to sanitize the data with a
couple of simple substitutions.

•Obviously, need to sanitize the quote
character, either to a HTML &#xx; style
sequence or by putting a \ before it.

•This alone is not enough, however!

•Also need to sanitize the backslash,
otherwise quotes can be escaped as the
attacker wishes.

����������	
���� ��� ������� ���

Preventing SQL Injection Attacks

Another good solution for database drivers that
support it is to use placeholders. This way, we
pass the buck to the DBI to do the sanitizing.
Put question marks in place of variables we want
to substitute in.
my $sth = $dbh->prepare(“

SELECT userid, usertype
FROM users
WHERE login = ? AND pass = ?

");

Specify variables here, and DBI handles all escaping
for us.
$sth->execute($form{'login'}, $form{'pass'});

����������	
���� ��� ������� ���

Preventing SQL Injection Attacks

I’ve only presented examples of using the
prepare/execute/fetch/finish method of doing
SQL queries.

•$dbh->do(…) style queries present an equal
risk; that “delete one thing” could easily be
turned into a “delete everything”.

•To use place holders, these need to be re-
written as a prepare/execute/finish sequence.

����������	
���� ��� ������� ���

Path Injection Attacks

Sometimes user supplied data is used to
generate a file path.
open FILE, ``< data/$form{'userid'}.dat'';

•Substituting unvalidated data into a path
may enable the attacker to modify the path
and/or the filename to one of their choice.

•Using “../”, the attacker can move up the
directory tree.

����������	
���� ��� ������� ���

Path Injection Attacks – NULL Tricks

The file extension can really get in an attackers
way if they wish to overwrite a file with a
different one.

•If the path gets
passed to a C
routine, then
putting a null
character (code
0) in gives the
attacker the ability to snip off the extension.

����������	
���� ��� ������� ���

Preventing Path Injection Attacks

Validate everything that is to be substituted into
a path or filename.

•Obviously, never let any slashes (forward or
backward – remember Win32 and *NIX)
through.

•And remember the NULL issue.

•This shows why positive validation is a Good
Thing™ - will eliminate these 2 cases “by
default”.

����������	
���� ��� ������� ���

Shell Injection Attacks

Shell injections are much like path injections
apart from the data that has not been validated
is passed directly to the shell for evaluation.

•In Perl, this can happen with anything placed
between backticks and passed to the
functions system(…), exec(…) and open(…).

•Very dangerous - enables direct arbitrary
code execution.

����������	
���� ��� ������� ���

Shell Injection Attacks

Imagine if the following line was executed and
$logpath was unvalidated.

my $feedback = `python log_parser.py $logpath`;

•Obvious potential damage; what if $logpath
contained “blah ; rm -rf /*”?

•More subtle attacks could include installation
of a trojan and emailing copies of the site
source and/or other data files to the attacker.

����������	
���� ��� ������� ���

Shell Injection Attacks

The Perl open statement provides a sneaky
way to do a shell injection attack.

Get path.
print "Enter path: ";
my $path = <>;
chop $path;

Display file.
open FILE, "$path";
print while <FILE>;
close FILE;

����������	
���� ��� ������� ���

Shell Injection Attacks

What happens if the user enters “rm *.pl |”?

•The pipe character has special meaning in
an open statement.

•The pipe at the end means “execute this
command and read the input it gives”.

•The command is executed at the shell!

•Once again, validation is the answer.

����������	
���� ��� ������� ���

Mail Header Injection Attacks

SPAM is suckful. So are some form mail scripts.
Here’s a typical snippet of mail sending code.

open MAIL, "| /usr/sbin/sendmail -t"';
print MAIL "To: $toaddr\n";
print MAIL "From: $fromaddr\n";
print MAIL "Subject: $subject\n\n";
Send body of email.

Thankfully, today almost all scripts do not allow
an arbitrary value to be in $toaddr. But how
many scripts bother to validate $subject?

����������	
���� ��� ������� ���

Mail Header Injection Attacks

Imagine that $subject can be given an arbitrary
value.

•An extra header could be inserted by making
$subject contain a line break, for example:
EVERY WOMAN LIKES A MAN WITH A BIG MORTGAGE!
Bcc: lots@of.us get@th.is

•Later headers can be curtailed by inserting a
double line-break, allowing control over the
message body too!

����������	
���� ��� ������� ���

Mail Header Injection Attacks

The attack has sent the message to additional
email addresses.
To: some@address.com
From: another@address.com
Subject: EVERY WOMAN LIKES MAN WITH A BIG MORTGAGE!
Bcc: lots@of.us get@th.is

Here comes the body of the email

Worst of all, the owner of the script won’t know
their script has been exploited until somebody
reports the SPAM, as they don’t see what is in
the Bcc header.

����������	
���� ��� ������� ���

XSS (Cross Site Scripting) Attacks

Sort of an injection attack, but directly involves
other users of the web application.

•Most web applications accept data from
users and later render this data to that user
and other users.

•If this data is not validated properly, it could
contain unwanted HTML tags, including
<script> tags.

•These could be sent to other users.

����������	
���� ��� ������� ���

XSS (Cross Site Scripting) Attacks

Why is being able to to insert HTML or run a
script on other user’s computers useful for
malicious activity?

•Defacing sites, to damage reputation etc.

•Stealing cookies that relate to the site in
question, which may contain session data.

•If there is a browser vulnerability about, an
attack can be distributed by hijacking XSS
vulnerable sites.

����������	
���� ��� ������� ���

XSS (Cross Site Scripting) Attacks

Sanitizing the < and > characters is a good
start, but not enough.

•Imagine a link directory that asks the user to
input a URL and a name for the link.

•If these were being pulled from a database,
the fetch and display loop could look like this:
while (my ($name, $url) = $sth->fetchrow_array()) {

print qq{$name};
}

����������	
���� ��� ������� ���

XSS (Cross Site Scripting) Attacks

Imagine that $url was not validated to ensure it
really was a URL.

•It could contain “javascript:alert(‘Ha’)”, or
something quieter and more useful.

•Alternatively, it could contain something like
(including the quote): ” onClick=“alert(‘Ha!’)

•Either of these will allow for execution of
arbitrary JavaScript when the link is clicked.

����������	
���� ��� ������� ���

Attacks On Multi-user Systems

Some web applications have a set of objects
associated with a particular user that they are
allowed to manipulate, but other users are not.

•For example, a link directory may intend to
allow users to only be able manipulate links
that they have added.

•Problems arise when an assumption is
made that if a user doesn’t have a link to
something on a page, they can’t access it.

����������	
���� ��� ������� ���

Attacks On Multi-user Systems

A common construction involves a page
containing a list of the links that the currently
logged in user owns, with a link to edit each
one.

A query to select the links may look like the one
below.

SELECT id, title, url description
FROM listings
WHERE userid = $auth_user{'userid'}

����������	
���� ��� ������� ���

Attacks On Multi-user Systems

A link to edit a listing will probably be generated
for each link the user owns as follows:

Edit

The edit listing script therefore receives a listing
ID, fetches the name and URL associated with
the listing and displays the current data in a
form, allowing it to be edited.

So far, so good.

����������	
���� ��� ������� ���

Attacks On Multi-user Systems

Once the data has been edited it needs to be
saved back to the database.

•The naïve update query looks like this:
UPDATE listings
SET title = '$title',

url = '$url',
description = 'description‘

WHERE id = $listingid

•Unfortunately, this allows any user who can
construct the appropriate HTTP request to
edit the listing.

����������	
���� ��� ������� ���

Attacks On Multi-user Systems

The solution is to always check that the listing
belongs to the currently logged in user.

•Can do a separate query to explicitly do the
check.

•Alternatively, include the condition of the
listing being owned by the current user in the
WHERE part of the UPDATE query and
check the number of rows the query affected
was not zero.

����������	
���� ��� ������� ���

Attacks On Multi-user Systems

I once implemented a wrapper around DBI that
helped catch mistakes like this during
development.

•A list of tables and the protected field were
passed to the constructor.

•Whenever an UPDATE or DELETE query
was done on one of the tables in the list, it
checked that the named field was mentioned
in the WHERE clause.

����������	
���� ��� ������� ���

Denial Of Service Attacks

Often the availability of an asset or of the web
application as a whole is important.

•Denial of service attacks attempt to make
the application unavailable to other users by
monopolising a limited resource.

•That resource might be bandwidth, disk
space, available memory or available
processing power.

����������	
���� ��� ������� ���

Denial Of Service Attacks

Preventing DOS attacks needs work throughout
the entire web stack, not just at the web
application level. However, potential web
application level issues exist.

•Failing to check for over-sized of input can
lead to massive resource consumption.

•Large input sets of data will expose the
growth rate of more complex algorithms.

•Some algorithms have de-generate cases.

����������	
���� ��� ������� ���

Insecure Web Applications Exist

How do I know?

•When I started out in web development,
some of my code was shockingly insecure.

•A number of popular web applications have
been found to contain instances of
vulnerabilities discussed in this talk.

•I’ve carried out attacks discussed in this talk
(usually at times when I’ve been asked to test
a site out).

����������	
���� ��� ������� ���

Conclusions

The following three points probably summarise
this talk fairly well:

•Security is about protecting privacy, integrity
or availability of assets from a malicious
attacker.

•Many attacks can be thwarted by good
validation, but not all of them.

•The effort expended to protect a system
should relate to the cost of it being exploited.

