
Formal Theory,
Informally

Jonathan Worthington
Birmingham.pm

Formal Theory, Informally

“I need rat poison and
beer to drink.”

Formal Theory, Informally

“I need [rat poison] and
[beer to drink].”

Formal Theory, Informally

“I need [rat poison and
beer] to drink.”

Formal Theory, Informally

Informal
�Ambiguity in
natural
languages is
often a source of
terrible puns

� It is also a
source of
confusion

Formal Theory, Informally

Formal
�Describe stuff using maths and logic,
not English sentences

�Mathematical notation is just another
language

�However, it is formally defined, unlike
English

�Enables us to say exactly what we
mean, without ambiguity

Formal Theory, Informally

Theory
�Theoretical work on computation
appeared before the first electronic
computers

�Provides us with tools to understand
what we're doing

�Provides new ideas that we can use in
the real world - even if we don't see the
use for them right away (for example,
RSA public key cryptography)

Formal Theory, Informally

Informally
�This isn't a maths lesson
�We'll look at some stuff that's come out
of the theory world...

� ...see how it helps us formally define
real world stuff...

� ...and see practical uses of it.

Formal Theory, Informally

Programming
Languages

Formal Theory, Informally

Programming Languages
�There's lots of theory that I could talk
about

� I'm going to focus on the theory that
helps us to build and understand
programming languages and the tools
that support our usage of them

�First of all: how does a program go
from source code to actually being
executed?

Formal Theory, Informally

The Journey Of A Program
1. The program is tokenised

if ($x == 0) {
$y = 42;

} else {
$y++;

}

if ($x == 0)

{ $y 42= ; }

else { $y ++ ;

}

Formal Theory, Informally

The Journey Of A Program
2. The parser takes these tokens and

makes a parse tree
if

$x

==

0

$y 42

=

else

$y

++

if ($x == 0)

{ $y 42= ; }

else { $y ++ ;

}

Formal Theory, Informally

The Journey Of A Program
3. We do magical funky things to the tree

and it becomes an abstract syntax tree
if

$x

==

0

$y 42

=

else

$y

++

AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int

Formal Theory, Informally

The Journey Of A Program
4. If we’re Perl 5, we’ll now walk over that

tree and, for each node, do something
AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int

��

Alternate Alternate Alternate Alternate

R eali tyR eali tyR eali tyR eali ty

Formal Theory, Informally

The Journey Of A Program
4. We walk over the tree and generate

machine code for each node
AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int

PROGRAM.EXE
00101011101011
10111110101000
01100001001010
10111101111101
01000011000010
0101011010101…

Alternate Alternate Alternate Alternate

R eali tyR eali tyR eali tyR eali ty

Formal Theory, Informally

The Journey Of A Program
4. We walk over the tree and generate

bytecode for a virtual machine
AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int

PROGRAM.PBC
00101011101011
10111110101000
01100001001010
10111101111101
01000011000010
0101011010101…

Formal Theory, Informally

The Journey Of A Program
5. A virtual machine (such as the JVM or

Parrot) interprets the bytecode or JIT-
compiles it to machine code

PROGRAM.PBC
00101011101011
10111110101000
01100001001010
10111101111101
01000011000010
0101011010101…

Formal Theory, Informally

Grammars

Formal Theory, Informally

A Detour Into Linguistics
�Linguists have been analysing real
languages for longer that we've had
programming languages to consider

�One of the many things they came up
with was the idea of a grammar

�Essentially, defining a language as a
set of rules; too rigid and formal to
really work for natural language, but
great for programming languages!

Formal Theory, Informally

Grammars
�Grammars are concerned with syntax,
not meaning

�The grammar for a programming
language can be used to generate all
syntactically valid programs for that
language

�A grammar is a formal way of
defining the syntax for a language

Formal Theory, Informally

Grammars
�Just because a program is syntactically
valid does not mean that it is
meaningful

���������	
�����������	
�����������	
�����������	
��

�Probably valid syntax as far as the
grammar is concerned

�42 in Perl, but still meaningless
�A compile-time type error in C#

Formal Theory, Informally

A grammar is made up of…
�Terminals – things that we see in the
language itself

�Production rules defining non-terminals

�Note rules can be recursive (beware of
what recursion is allowed – it differs)

digit ::= \d+
op ::= + | - | * | /

expr ::= digit op expr
| digit

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

digit op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

digit op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

digit op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + digit

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + digit

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + digit

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Generation With A Grammar
�We also define a start rule: in this case,
we will use expr.

�Can start expanding out the production
rules until we reach all tokens.

41 + 1

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

Formal Theory, Informally

Parsing
�Grammars are more commonly used to
do the reverse of this process
�Taking a program
�Work out what grammar rules you
need to get back to the start rule

�There’s more than one way to parse
�Recursive descent
�Stack/automata based

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: +

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: +

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7

expr

Formal Theory, Informally

Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7

expr

expr

Formal Theory, Informally

Grammars In Perl 6
�So you’re never going to write a
compiler, and are wondering how
grammars will be useful to you?

�Answer: Perl 6 has grammars built into
the language!

�The syntax of the Perl 6 language itself
is formally described by a grammar too,
meaning that multiple implementations
are now feasible

Formal Theory, Informally

Grammars In Perl 6
�Can translate our example directly into
Perl 6.

grammar Math {
token op { <'/'> | <'*'>

| <'+'> | <'-'> }
token digit { \d+ }
token expr { <digit> <op> <expr>

| <digit> }
}

my $tree = "35+7" ~~ /^<Math.expr>$/;

Formal Theory, Informally

Grammars In Perl 6
�Can translate our example directly into
Perl 6.

grammar Math { # Not yet in Pugs
token op { <'/'> | <'*'>

| <'+'> | <'-'> }
token digit { \d+ }
token expr { <digit> <op> <expr>

| <digit> }
}

my $tree = "35+7" ~~ /^<expr>$/;

Formal Theory, Informally

Attribute
Grammars

Formal Theory, Informally

Mostly A Scary Name
�Attribute grammars might sound less
scary if we called them Tree Grammars

�They are used in the Tree Grammar
Engine, part of the Parrot compiler tools

� Instead of taking a string of characters
as input, tree grammars take a tree

�Specify a “transform” to perform on
each type of node in the tree

Formal Theory, Informally

Abstract Syntax Trees
�Aim is to capture the semantics, but
without the mess in the parse tree that
was a result of the language’s syntax

�Also annotate nodes with extra stuff –
perhaps types

digit: 7

expr AST::Literal
value: 7
type: int

Formal Theory, Informally

Writing Attribute Grammar Transforms
�This is TGE-like syntax (you can’t write
Perl 6 to implement the transform yet,
only PIR)

�Here’s the rule for digit nodes

transform make_ast (digit) {
my $result = new AST::Literal;
$result.value = $node;
$result.type = 'int'

}

Formal Theory, Informally

Writing Attribute Grammar Transforms
�The rule for expr is more complex

transform make_ast (expr) {
if $node<op> {

$result = new AST::Op;
$result.opname = $node<op>;
$result.oper1 = $node<digit>;
$result.oper2 = $node<expr>;

} else {
$result = $node<digit>;

}
}

Formal Theory, Informally

From Parse Tree To AST

digit: 35 op: + digit: 7

expr

expr

Formal Theory, Informally

From Parse Tree To AST

transform make_ast (digit)

digit: 35 op: + digit: 7

expr

expr

Formal Theory, Informally

From Parse Tree To AST

op: + digit: 7

expr

expr

AST::Literal
value: 35
type: int

Formal Theory, Informally

From Parse Tree To AST

transform make_ast (digit)

op: + digit: 7

expr

expr

AST::Literal
value: 35
type: int

Formal Theory, Informally

From Parse Tree To AST

op: +

expr

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int

Formal Theory, Informally

From Parse Tree To AST

transform make_ast (expr)

op: +

expr

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int

Formal Theory, Informally

From Parse Tree To AST

op: +

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int

Formal Theory, Informally

From Parse Tree To AST

transform make_ast (expr)

op: +

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int

Formal Theory, Informally

From Parse Tree To AST

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int

AST::Op
op_name: +

oper1 oper2

Formal Theory, Informally

Formal
Semantics

Formal Theory, Informally

Oh, behave!
�Grammars enabled
us to formally specify
the syntax of a
language

�Formal semantics is
about formally
specifying the
behaviour of the
language

Formal Theory, Informally

Approaches To Formal Semantics
�Operational semantics describe the
steps involved in executing the
program. Syntax directed, quite easy
to work with.

�Denotational semantics map the
programming language onto a
mathematical model. This is somewhat
harder to work with.

�There are other approaches

Formal Theory, Informally

Operational Semantics
�We formalize the execution of the
program by taking steps according to a
sequence of evaluation rules

�These evaluation rules are what
formally define the language

� In the examples I will demonstrate, at
any point in the execution we will have
the current term that is being evaluated
and a store (mapping names to values)

Formal Theory, Informally

Operational Semantics
�We will take a very simple language to
define the semantics for

� It’s helpful to see the syntax first -
value ::= n | x | true | false

(n is an integer, x is a name)
term ::= if expr then expr else expr

| expr + expr
| expr == expr

expr ::= value | term

Formal Theory, Informally

Inductive Evaluation Rules
�Terms in our program fall into two
categories
�Things we can evaluate right away
(for example, 39 + 3) – rules for
these are our base cases

�Things we need to evaluate part of
first (for example, (27 + 12) + 3) –
rules for these are our inductive
steps

Formal Theory, Informally

Inductive Evaluation Rules
�The key idea behind induction: we can
always break a program down until we
get to base cases

�This provides us with a mechanism for
proving a semantics have a property:
�Prove it for the base cases
�Prove that inductive steps retain the
property

Formal Theory, Informally

Evaluation Rules – Base Cases

�s represents the store (mapping
names to values)

�� represents a step of computation
�n, n1 and n2 represent integers

Formal Theory, Informally

Evaluation Rules – Base Cases

� t1 and t2 represent other terms in the
program

�Essentially, if the condition is true, the
term as a whole reduces to the “then”
cause, otherwise it reduces to the
“else” clause

Formal Theory, Informally

Evaluation Rules – Inductive Steps

�You can read the first rule as “if I have
two terms added together, I do a step
of evaluation on the first term”

�Note that these two rules encode that
we evaluate left to right for addition!

Formal Theory, Informally

Evaluation Rules – Inductive Steps
�The rest of the inductive steps pretty
much follow this pattern

�Remember how in the grammar I
carefully separated terms from values

�This means that our rules are
deterministic – there is always at most
one rule we can choose

� If no possible rule, the program is stuck

Formal Theory, Informally

Example Evaluation
�Here is an example evaluation using the
rules that we defined.

(if x == 0 then 42 else 12, {x����0})

Formal Theory, Informally

Example Evaluation
�Here is an example evaluation using the
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
���� (if 0 == 0 then 42 else 12, {x����0})

Formal Theory, Informally

Example Evaluation
�Here is an example evaluation using the
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
���� (if 0 == 0 then 42 else 12, {x����0})
���� (if true then 42 else 12, {x����0})

Formal Theory, Informally

Example Evaluation
�Here is an example evaluation using the
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
���� (if 0 == 0 then 42 else 12, {x����0})
���� (if true then 42 else 12, {x����0})
���� (42, {x����0})

Formal Theory, Informally

An Evaluation That Gets Stuck
�Evaluating this will get to a state where
no rules apply

(if x + 5 then 42 else 12, {x����3})

Formal Theory, Informally

An Evaluation That Gets Stuck
�Evaluating this will get to a state where
no rules apply

(if x + 5 then 42 else 12, {x����3})
���� (if 3 + 5 then 42 else 12, {x����0})

Formal Theory, Informally

An Evaluation That Gets Stuck
�Evaluating this will get to a state where
no rules apply

(if x + 5 then 42 else 12, {x����3})
���� (if 3 + 5 then 42 else 12, {x����0})
���� (if 8 then 42 else 12, {x����0})

Formal Theory, Informally

An Evaluation That Gets Stuck
�Evaluating this will get to a state where
no rules apply

(if x + 5 then 42 else 12, {x����3})
���� (if 3 + 5 then 42 else 12, {x����0})
���� (if 8 then 42 else 12, {x����0})
���� FAIL

�Would like to turn down programs like
this somehow at compile time

Formal Theory, Informally

What Is A Type?
�TMTOWTDI (There’s More Than One
Way To Define It)

�A common definition: a type classifies a
value (e.g. 42 is an integer, “monkey” is
a string…)

�Another definition: a type defines the
representation of and set of operations
that can be performed on a value

Formal Theory, Informally

What Is A Type System?
�Real programs consist of terms that
compute values
�“������”

�A type system classifies a term in a
program according to the type of values
that it will compute
�“������” will have type “���
	
�”

�Vary greatly between languages

Formal Theory, Informally

Formalizing Types
�We usually specify that a term has a
type by placing a colon between the
two

�Notation exists for more complex types;
I’ll only detail functional types

Formal Theory, Informally

Functional Types
�Functional types (that is, types of
functions) use an arrow notation
�The type of the arguments go to the
left of the arrow

�The type of the return value goes to
the right of the arrow

Formal Theory, Informally

Type Environments
�A type environment, often written �
(uppercase Greek letter gamma), maps
names (of variables in languages that
have them) to types

�For example, the following type
environment tells us the types of the
scalars $x and $b

Formal Theory, Informally

Type Environments
�The type environment � on the last
slide allows us to determine the
following typing:

�Formally we write this as follows:

�Which we read as “gamma proves that
2 * $x has type int”

Formal Theory, Informally

Inductive Typing Rules
�We use inductive rules, just like we did
with operational semantics

�Here are some the base cases for our
type system – the types for values

Formal Theory, Informally

Inductive Typing Rules
�Addition could have this typing rule:

�You can read this as “we can prove that
t1 + t2 has type int provided that t1 has
type int and t2 has type int”

�The conditions above the line must be
true for the what is below the line to be

Formal Theory, Informally

Inductive Typing Rules
�The typing rule for “if” is a little more
complex; we introduce a type variable
T:

�This specifies that the condition of the if
statement must be a boolean and the
branches of the if must have the same
type (not true of all languages!)

Formal Theory, Informally

Type Checking
�Given a type environment, a term and
the type that we believe the term to
have, type checking verifies that the
term does indeed have that type

�By doing type checking at compile time
with the typing rule for “if” shown on the
last slide, our stuck example from
earlier is now rejected at compile time!

Formal Theory, Informally

Type Inference
�Given a type environment and a term,
type inference finds the type that the
term has, if it does indeed have one.

�Often seen in functional languages
(ML, Haskell).

�Computationally harder than type
checking; type inference problem is
undecidable for some type systems!

Formal Theory, Informally

Type Safety
�Type systems provide a way to ensure
that our programs cannot perform
certain bad operations at runtime

�For example, most high level
languages only allow a reference to be
used in a de-reference operations.

�Not the case in all languages; in C can
create a pointer from any integer =>
programs can segfault

Formal Theory, Informally

Type Safety
�Perl 5’s type system only allows
references to be de-referenced; you get
a runtime “type error” if you try to de-
reference an integer (with strict on)

�������
������������
������������
������������
�����

������������
��������������
��������������
��������������
��

��
����������
����������
����������
��������

���������� !�
���

"����������� !�
���

"����������� !�
���

"����������� !�
���

"�

��

���
����
��������
����
��������
����
��������
����
�����

#��$����
������	�%��&�'��(''��)������*#+,+-��
"�./��
�#��$����
������	�%��&�'��(''��)������*#+,+-��
"�./��
�#��$����
������	�%��&�'��(''��)������*#+,+-��
"�./��
�#��$����
������	�%��&�'��(''��)������*#+,+-��
"�./��
�

���������
"��������
�����
���������
������������
"��������
�����
���������
������������
"��������
�����
���������
������������
"��������
�����
���������
���

Formal Theory, Informally

Type Safety
�Compare that with what C’s type
system lets you do

�This program will produce a segfault
when you run it

��������%)��������%)��������%)��������%)

0000

����!��� !�
���

"�����!��� !�
���

"�����!��� !�
���

"�����!��� !�
���

"�

���1�����%���1)!���1������
�2�
�������2���
���1����1�����%���1)!���1������
�2�
�������2���
���1����1�����%���1)!���1������
�2�
�������2���
���1����1�����%���1)!���1������
�2�
�������2���
���1�

��������1����1�3
�
"
�
��
���4+5667��1���������1����1�3
�
"
�
��
���4+5667��1���������1����1�3
�
"
�
��
���4+5667��1���������1����1�3
�
"
�
��
���4+5667��1�

�
����� ��
����� ��
����� ��
����� �

8888

Formal Theory, Informally

Type Safety
�The distinction we are making here is
that Perl is type safe, while C is not

�Type safety is a (highly desirable)
property of the type system, but for any
complex type system, it is not usually
obvious that it is type safe

� If we formally describe the type system
with induction rules, we can prove type
safety!

Formal Theory, Informally

Static vs. Dynamic Typing
�The distinction being made is when
type checking takes place

�Statically typed languages will type
check the entire program at compile
time

�Dynamically typed languages usually
require values to carry their types
around with them and perform a check
at runtime when a value is used

Formal Theory, Informally

Static vs. Dynamic Typing Example
�The following program may work fine in
a dynamically typed language, but fail
to compile under a statically typed one

�Value always an integer by the time x is
used in the add operation; static type
check can’t determine this

!���!���!���!���9999"22"22"22"22::::

�"�%�2���
!��2�����2���/��������.�������
)�"�%�2���
!��2�����2���/��������.�������
)�"�%�2���
!��2�����2���/��������.�������
)�"�%�2���
!��2�����2���/��������.�������
)

!�����!�����!�����!�����

����!���������!���������!���������!�����

Formal Theory, Informally

Strong vs. Weak Typing
�A vague definition: “how strictly are
type rules enforced?”

�A strongly typed language (e.g. C#)
would reject the following program; a
weakly typed language (Visual Basic,
Perl) would accept it

!������!������!������!������

����������������9999� � � � ::::

;���!����;���!����;���!����;���!����

Formal Theory, Informally

Strong vs. Weak Typing
�Strongly typed languages generally
enforce that coercions between types
that may cause data loss (such as
string to integer) must be written
explicitly as casts

�Weakly typed languages assume the
programmer knows what they are doing
(not always a good assumption!) and
performs a coercion implicitly

Formal Theory, Informally

Polymorphism
�Again, TMTOWTDI (both for D = Define
and D = Do)

�One definition: polymorphism occurs
when a term or value can be classified
as having more than one type

�Another definition: polymorphism allows
the same code to operate on values of
different types

Formal Theory, Informally

Polymorphism
�Many ways to achieve polymorphism
� I will quickly look at three of them that
feature in Perl 6 in some form
�Subclassing
�Parametric polymorphism (aka
generics and parameterised types)

�Refinement types

Formal Theory, Informally

Subclassing
�More commonly known as inheritance
�A key part of object oriented
programming

�A subclass may be used in place of a
parent class because it only adds to the
behaviours and representation that the
parent class has

�Found in the many OO languages

Formal Theory, Informally

Subclassing
�Perl 6 has some nicer syntax for
defining a subclass than Perl 5:

�We formalize subclassing by adding a
sub-typing rule that looks something
like this (we really need to define “isa”)

������7
�2�����<�����0������7
�2�����<�����0������7
�2�����<�����0������7
�2�����<�����0

������������

8888

Formal Theory, Informally

Parametric Polymorphism
�Key idea: a type can take type
parameters, just as a function takes
function parameters

�We could define the types “integer list”,
“string list”, etc.

�Parametric polymorphism allows us to
give the list the type “� list”, where � is
a type parameter that we supply when
using the list

Formal Theory, Informally

Parametric Polymorphism
�For example, we could implement a
parametric List type in C# 2.0 that looks
something like this:

�������������,���=>?�������������,���=>?�������������,���=>?�������������,���=>?

0000

�������@2���+��%>�@���
)�������@2���+��%>�@���
)�������@2���+��%>�@���
)�������@2���+��%>�@���
)

0000

������������

8����8����8����8����

�������>�A
�%�������
!)�������>�A
�%�������
!)�������>�A
�%�������
!)�������>�A
�%�������
!)

0000

������������

8�8�8�8�

Formal Theory, Informally

Parametric Polymorphism
�The type parameter is supplied when
an instance of the list class is created

�Perl 6 provides parametric
polymorphism in an interesting way!

�A role (basically a group of methods
that are composed into a class) is
implicitly parameterised on the type of
the invocant

,���=���?����
.�,���=���?%)�,���=���?����
.�,���=���?%)�,���=���?����
.�,���=���?%)�,���=���?����
.�,���=���?%)�

Formal Theory, Informally

Refinement Types
�A refinement type is obtained by adding
constraints to an existing type

�For example, the type EvenInt is a
refinement of the Int type that only
contains even integers

� In Perl 6, EvenInt would be defined like
this:

����
��B@
�C���2"�C���./
�
�0��D��E������ �8����
��B@
�C���2"�C���./
�
�0��D��E������ �8����
��B@
�C���2"�C���./
�
�0��D��E������ �8����
��B@
�C���2"�C���./
�
�0��D��E������ �8

Formal Theory, Informally

Refinement Types
�Anonymous refinement types in Perl 6
will be very useful!

�Can use a more refined type in place of
a less refined one, providing yet
another path to polymorphic code!

����F��@
�%C������./
�
�0��D��E������ �8)��
������C������F��@
�%C������./
�
�0��D��E������ �8)��
������C������F��@
�%C������./
�
�0��D��E������ �8)��
������C������F��@
�%C������./
�
�0��D��E������ �8)��
������C��

0000

�
�������������
�������������
�������������
������������

8888

Formal Theory, Informally

The End

Formal Theory, Informally

Any questions?

