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beer] to drink.”
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Informal
�Ambiguity in 
natural 
languages is 
often a source of 
terrible puns

� It is also a 
source of 
confusion
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Formal
�Describe stuff using maths and logic, 
not English sentences

�Mathematical notation is just another 
language

�However, it is formally defined, unlike 
English

�Enables us to say exactly what we 
mean, without ambiguity
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Theory
�Theoretical work on computation 
appeared before the first electronic 
computers

�Provides us with tools to understand 
what we're doing

�Provides new ideas that we can use in 
the real world - even if we don't see the 
use for them right away (for example, 
RSA public key cryptography)
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Informally
�This isn't a maths lesson
�We'll look at some stuff that's come out 
of the theory world...

� ...see how it helps us formally define 
real world stuff...

� ...and see practical uses of it.
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Programming
Languages
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Programming Languages
�There's lots of theory that I could talk 
about

� I'm going to focus on the theory that 
helps us to build and understand 
programming languages and the tools 
that support our usage of them

�First of all: how does a program go 
from source code to actually being 
executed?
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The Journey Of A Program
1. The program is tokenised

if ($x == 0) {
$y = 42;

} else {
$y++;

}

if ( $x == 0 )

{ $y 42= ; }

else { $y ++ ;

}
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The Journey Of A Program
2. The parser takes these tokens and

makes a parse tree
if

$x

==

0

$y 42

=

else

$y

++

if ( $x == 0 )

{ $y 42= ; }

else { $y ++ ;

}
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The Journey Of A Program
3. We do magical funky things to the tree

and it becomes an abstract syntax tree
if

$x

==

0

$y 42

=

else

$y

++

AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int
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The Journey Of A Program
4. If we’re Perl 5, we’ll now walk over that

tree and, for each node, do something
AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int
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The Journey Of A Program
4. We walk over the tree and generate

machine code for each node
AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int

PROGRAM.EXE
00101011101011
10111110101000
01100001001010
10111101111101
01000011000010
0101011010101…



Alternate Alternate Alternate Alternate 

R eali tyR eali tyR eali tyR eali ty
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The Journey Of A Program
4. We walk over the tree and generate

bytecode for a virtual machine
AST::If

AST::Op
op: ==
type: int

cond

AST::Var
name: $x
type: int

AST::Val
value: 0
type: int

PROGRAM.PBC
00101011101011
10111110101000
01100001001010
10111101111101
01000011000010
0101011010101…
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The Journey Of A Program
5. A virtual machine (such as the JVM or

Parrot) interprets the bytecode or JIT-
compiles it to machine code

PROGRAM.PBC
00101011101011
10111110101000
01100001001010
10111101111101
01000011000010
0101011010101…
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Grammars
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A Detour Into Linguistics
�Linguists have been analysing real 
languages for longer that we've had 
programming languages to consider

�One of the many things they came up 
with was the idea of a grammar

�Essentially, defining a language as a 
set of rules; too rigid and formal to 
really work for natural language, but 
great for programming languages!
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Grammars
�Grammars are concerned with syntax, 
not meaning

�The grammar for a programming 
language can be used to generate all 
syntactically valid programs for that 
language

�A grammar is a formal way of 
defining the syntax for a language
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Grammars
�Just because a program is syntactically 
valid does not mean that it is 
meaningful

���������	
�����������	
�����������	
�����������	
��

�Probably valid syntax as far as the 
grammar is concerned

�42 in Perl, but still meaningless
�A compile-time type error in C#
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A grammar is made up of…
�Terminals – things that we see in the 
language itself

�Production rules defining non-terminals

�Note rules can be recursive (beware of 
what recursion is allowed – it differs)

digit ::= \d+
op ::= + | - | * | /

expr ::= digit op expr
| digit
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

digit op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

digit op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 op expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + expr

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + digit

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + digit

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + digit

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Generation With A Grammar
�We also define a start rule: in this case, 
we will use expr.

�Can start expanding out the production 
rules until we reach all tokens.

41 + 1

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /
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Parsing
�Grammars are more commonly used to 
do the reverse of this process
�Taking a program
�Work out what grammar rules you 
need to get back to the start rule

�There’s more than one way to parse
�Recursive descent
�Stack/automata based
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: +
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: +
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7

expr
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Parsing
�Result is that we build a parse tree

expr ::= digit op expr
| digit

digit ::= \d+
op ::= + | - | * | /

35 + 7

digit: 35 op: + digit: 7

expr

expr
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Grammars In Perl 6
�So you’re never going to write a 
compiler, and are wondering how 
grammars will be useful to you?

�Answer: Perl 6 has grammars built into 
the language!

�The syntax of the Perl 6 language itself 
is formally described by a grammar too, 
meaning that multiple implementations 
are now feasible
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Grammars In Perl 6
�Can translate our example directly into 
Perl 6.

grammar Math {
token op    { <'/'> | <'*'> 

| <'+'> | <'-'> }
token digit { \d+ }
token expr  { <digit> <op> <expr> 

| <digit> }
}

my $tree = "35+7" ~~ /^<Math.expr>$/;
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Grammars In Perl 6
�Can translate our example directly into 
Perl 6.

# grammar Math { # Not yet in Pugs
token op    { <'/'> | <'*'> 

| <'+'> | <'-'> }
token digit { \d+ }
token expr  { <digit> <op> <expr> 

| <digit> }
# }

my $tree = "35+7" ~~ /^<expr>$/;
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Attribute 
Grammars
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Mostly A Scary Name
�Attribute grammars might sound less 
scary if we called them Tree Grammars

�They are used in the Tree Grammar 
Engine, part of the Parrot compiler tools

� Instead of taking a string of characters 
as input, tree grammars take a tree

�Specify a “transform” to perform on 
each type of node in the tree
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Abstract Syntax Trees
�Aim is to capture the semantics, but 
without the mess in the parse tree that 
was a result of the language’s syntax

�Also annotate nodes with extra stuff –
perhaps types

digit: 7

expr AST::Literal
value: 7
type: int
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Writing Attribute Grammar Transforms
�This is TGE-like syntax (you can’t write 
Perl 6 to implement the transform yet, 
only PIR)

�Here’s the rule for digit nodes

transform make_ast (digit) {
my $result = new AST::Literal;
$result.value = $node;
$result.type = 'int'    

}
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Writing Attribute Grammar Transforms
�The rule for expr is more complex

transform make_ast (expr) {
if $node<op> {

$result = new AST::Op;
$result.opname = $node<op>;
$result.oper1 = $node<digit>;
$result.oper2 = $node<expr>;

} else {
$result = $node<digit>;

}
}
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From Parse Tree To AST

digit: 35 op: + digit: 7

expr

expr
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From Parse Tree To AST

transform make_ast (digit)

digit: 35 op: + digit: 7

expr

expr
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From Parse Tree To AST

op: + digit: 7

expr

expr

AST::Literal
value: 35
type: int
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From Parse Tree To AST

transform make_ast (digit)

op: + digit: 7

expr

expr

AST::Literal
value: 35
type: int
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From Parse Tree To AST

op: +

expr

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int
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From Parse Tree To AST

transform make_ast (expr)

op: +

expr

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int
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From Parse Tree To AST

op: +

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int
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From Parse Tree To AST

transform make_ast (expr)

op: +

expr

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int
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From Parse Tree To AST

AST::Literal
value: 35
type: int

AST::Literal
value: 7
type: int

AST::Op
op_name: +

oper1 oper2
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Formal 
Semantics
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Oh, behave!
�Grammars enabled 
us to formally specify 
the syntax of a 
language

�Formal semantics is 
about formally 
specifying the 
behaviour of the 
language
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Approaches To Formal Semantics
�Operational semantics describe the 
steps involved in executing the 
program. Syntax directed, quite easy 
to work with.

�Denotational semantics map the 
programming language onto a 
mathematical model. This is somewhat 
harder to work with.

�There are other approaches
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Operational Semantics
�We formalize the execution of the 
program by taking steps according to a 
sequence of evaluation rules

�These  evaluation rules are what 
formally define the language

� In the examples I will demonstrate, at 
any point in the execution we will have 
the current term that is being evaluated 
and a store (mapping names to values)
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Operational Semantics
�We will take a very simple language to 
define the semantics for

� It’s helpful to see the syntax first -
value ::= n | x | true | false

(n is an integer, x is a name)
term ::= if expr then expr else expr 

| expr + expr
| expr == expr

expr ::= value | term
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Inductive Evaluation Rules
�Terms in our program fall into two 
categories
�Things we can evaluate right away 
(for example, 39 + 3) – rules for 
these are our base cases

�Things we need to evaluate part of 
first (for example, (27 + 12) + 3) –
rules for these are our inductive 
steps
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Inductive Evaluation Rules
�The key idea behind induction: we can 
always break a program down until we 
get to base cases

�This provides us with a mechanism for 
proving a semantics have a property:
�Prove it for the base cases
�Prove that inductive steps retain the 
property
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Evaluation Rules – Base Cases

�s represents the store (mapping 
names to values)

�� represents a step of computation
�n, n1 and n2 represent integers
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Evaluation Rules – Base Cases

� t1 and t2 represent other terms in the 
program

�Essentially, if the condition is true, the 
term as a whole reduces to the “then”
cause, otherwise it reduces to the 
“else” clause
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Evaluation Rules – Inductive Steps

�You can read the first rule as “if I have 
two terms added together, I do a step 
of evaluation on the first term”

�Note that these two rules encode that 
we evaluate left to right for addition!
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Evaluation Rules – Inductive Steps
�The rest of the inductive steps pretty 
much follow this pattern

�Remember how in the grammar I 
carefully separated terms from values

�This means that our rules are 
deterministic – there is always at most 
one rule we can choose

� If no possible rule, the program is stuck
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Example Evaluation
�Here is an example evaluation using the 
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
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Example Evaluation
�Here is an example evaluation using the 
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
���� (if 0 == 0 then 42 else 12, {x����0})
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Example Evaluation
�Here is an example evaluation using the 
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
���� (if 0 == 0 then 42 else 12, {x����0})
���� (if true then 42 else 12, {x����0})
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Example Evaluation
�Here is an example evaluation using the 
rules that we defined.

(if x == 0 then 42 else 12, {x����0})
���� (if 0 == 0 then 42 else 12, {x����0})
���� (if true then 42 else 12, {x����0})
���� (42, {x����0})
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An Evaluation That Gets Stuck
�Evaluating this will get to a state where 
no rules apply

(if x + 5 then 42 else 12, {x����3})
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An Evaluation That Gets Stuck
�Evaluating this will get to a state where 
no rules apply

(if x + 5 then 42 else 12, {x����3})
���� (if 3 + 5 then 42 else 12, {x����0})
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An Evaluation That Gets Stuck
�Evaluating this will get to a state where 
no rules apply

(if x + 5 then 42 else 12, {x����3})
���� (if 3 + 5 then 42 else 12, {x����0})
���� (if 8 then 42 else 12, {x����0})
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An Evaluation That Gets Stuck
�Evaluating this will get to a state where 
no rules apply

(if x + 5 then 42 else 12, {x����3})
���� (if 3 + 5 then 42 else 12, {x����0})
���� (if 8 then 42 else 12, {x����0})
���� FAIL

�Would like to turn down programs like 
this somehow at compile time
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What Is A Type?
�TMTOWTDI (There’s More Than One 
Way To Define It)

�A common definition: a type classifies a 
value (e.g. 42 is an integer, “monkey” is 
a string…)

�Another definition: a type defines the 
representation of and set of operations 
that can be performed on a value
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What Is A Type System?
�Real programs consist of terms that 
compute values
�“������”

�A type system classifies a term in a 
program according to the type of values 
that it will compute
�“������” will have type “���
	
�”

�Vary greatly between languages
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Formalizing Types
�We usually specify that a term has a 
type by placing a colon between the 
two

�Notation exists for more complex types; 
I’ll only detail functional types
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Functional Types
�Functional types (that is, types of 
functions) use an arrow notation
�The type of the arguments go to the 
left of the arrow

�The type of the return value goes to 
the right of the arrow
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Type Environments
�A type environment, often written �
(uppercase Greek letter gamma), maps 
names (of variables in languages that 
have them) to types

�For example, the following type 
environment tells us the types of the 
scalars $x and $b
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Type Environments
�The type environment � on the last 
slide allows us to determine the 
following typing:

�Formally we write this as follows:

�Which we read as “gamma proves that 
2 * $x has type int”
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Inductive Typing Rules
�We use inductive rules, just like we did 
with operational semantics

�Here are some the base cases for our 
type system – the types for values
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Inductive Typing Rules
�Addition could have this typing rule:

�You can read this as “we can prove that 
t1 + t2 has type int provided that t1 has 
type int and t2 has type int”

�The conditions above the line must be 
true for the what is below the line to be



Formal Theory, Informally

Inductive Typing Rules
�The typing rule for “if” is a little more 
complex; we introduce a type variable 
T:

�This specifies that the condition of the if 
statement must be a boolean and the 
branches of the if must have the same 
type (not true of all languages!)
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Type Checking
�Given a type environment, a term and 
the type that we believe the term to 
have, type checking verifies that the 
term does indeed have that type

�By doing type checking at compile time 
with the typing rule for “if” shown on the 
last slide, our stuck example from 
earlier is now rejected at compile time!
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Type Inference
�Given a type environment and a term, 
type inference finds the type that the 
term has, if it does indeed have one.

�Often seen in functional languages 
(ML, Haskell).

�Computationally harder than type 
checking; type inference problem is 
undecidable for some type systems!
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Type Safety
�Type systems provide a way to ensure 
that our programs cannot perform 
certain bad operations at runtime

�For example, most high level 
languages only allow a reference to be 
used in a de-reference operations.

�Not the case in all languages; in C can 
create a pointer from any integer => 
programs can segfault
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Type Safety
�Perl 5’s type system only allows 
references to be de-referenced; you get 
a runtime “type error” if you try to de-
reference an integer (with strict on)
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Type Safety
�Compare that with what C’s type 
system lets you do

�This program will produce a segfault 
when you run it
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Type Safety
�The distinction we are making here is 
that Perl is type safe, while C is not

�Type safety is a (highly desirable) 
property of the type system, but for any 
complex type system, it is not usually 
obvious that it is type safe

� If we formally describe the type system 
with induction rules, we can prove type 
safety!
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Static vs. Dynamic Typing
�The distinction being made is when 
type checking takes place

�Statically typed languages will type 
check the entire program at compile 
time

�Dynamically typed languages usually 
require values to carry their types 
around with them and perform a check 
at runtime when a value is used
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Static vs. Dynamic Typing Example
�The following program may work fine in 
a dynamically typed language, but fail 
to compile under a statically typed one

�Value always an integer by the time x is 
used in the add operation; static type 
check can’t determine this

!���!���!���!���9999"22"22"22"22::::

�"�%�2���
!��2�����2���/��������.�������
)�"�%�2���
!��2�����2���/��������.�������
)�"�%�2���
!��2�����2���/��������.�������
)�"�%�2���
!��2�����2���/��������.�������
)

!�����!�����!�����!�����

����!���������!���������!���������!�����
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Strong vs. Weak Typing
�A vague definition: “how strictly are 
type rules enforced?”

�A strongly typed language (e.g. C#) 
would reject the following program; a 
weakly typed language (Visual Basic, 
Perl) would accept it

!������!������!������!������

����������������9999� � � � ::::

;���!����;���!����;���!����;���!����
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Strong vs. Weak Typing
�Strongly typed languages generally 
enforce that coercions between types 
that may cause data loss (such as 
string to integer) must be written 
explicitly as casts

�Weakly typed languages assume the 
programmer knows what they are doing 
(not always a good assumption!) and 
performs a coercion implicitly
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Polymorphism
�Again, TMTOWTDI (both for D = Define 
and D = Do)

�One definition: polymorphism occurs 
when a term or value can be classified 
as having more than one type

�Another definition: polymorphism allows 
the same code to operate on values of 
different types
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Polymorphism
�Many ways to achieve polymorphism
� I will quickly look at three of them that 
feature in Perl 6 in some form
�Subclassing
�Parametric polymorphism (aka 
generics and parameterised types)

�Refinement types
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Subclassing
�More commonly known as inheritance
�A key part of object oriented 
programming

�A subclass may be used in place of a 
parent class because it only adds to the 
behaviours and representation that the 
parent class has

�Found in the many OO languages
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Subclassing
�Perl 6 has some nicer syntax for 
defining a subclass than Perl 5:

�We formalize subclassing by adding a 
sub-typing rule that looks something 
like this (we really need to define “isa”)

������7
�2�����<�����0������7
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Parametric Polymorphism
�Key idea: a type can take type 
parameters, just as a function takes 
function parameters

�We could define the types “integer list”, 
“string list”, etc.

�Parametric polymorphism allows us to 
give the list the type “� list”, where � is 
a type parameter that we supply when 
using the list
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Parametric Polymorphism
�For example, we could implement a 
parametric List type in C# 2.0 that looks 
something like this:
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Parametric Polymorphism
�The type parameter is supplied when 
an instance of the list class is created

�Perl 6 provides parametric 
polymorphism in an interesting way!

�A role (basically a group of methods 
that are composed into a class) is 
implicitly parameterised on the type of 
the invocant

,���=���?����
.�,���=���?%)�,���=���?����
.�,���=���?%)�,���=���?����
.�,���=���?%)�,���=���?����
.�,���=���?%)�
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Refinement Types
�A refinement type is obtained by adding 
constraints to an existing type

�For example, the type EvenInt is a 
refinement of the Int type that only 
contains even integers

� In Perl 6, EvenInt would be defined like 
this:

����
��B@
�C���2"�C���./
�
�0��D��E������ �8����
��B@
�C���2"�C���./
�
�0��D��E������ �8����
��B@
�C���2"�C���./
�
�0��D��E������ �8����
��B@
�C���2"�C���./
�
�0��D��E������ �8
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Refinement Types
�Anonymous refinement types in Perl 6 
will be very useful!

�Can use a more refined type in place of 
a less refined one, providing yet 
another path to polymorphic code!
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The End
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Any questions?


