
Jonathan Worthington

Virtual Machine Bytecode

Translation:

From The .Net CLI To Parrot

BA in Computer Science

Emmanuel College

May 16, 2006

Proforma

Name: Jonathan Worthington

College: Emmanuel College

Project Title: Virtual Machine Bytecode Translation

Examination: BA in Computer Science, May 2005

Word Count: 11,971

Project Originator: Jonathan Worthington

Supervisor: Dr T. Griffin

Original Aims of the Project

This project aimed to investigate a possible solution to virtual machine interoper-

ability problems by implementing a translator from the .Net Common Language

Infrastructure’s bytecode, which runs on a stack based VM designed by Microsoft,

to Parrot bytecode, which runs on a register based VM being developed by the

Perl community. The translator was to cover a subset of the .Net features, in-

cluding arithmetic and logical operations, branches, object-oriented features such

as classes, methods and fields, managed pointers and exceptions.

Work Completed

The translation of all planned features was implemented along with a couple

of extensions. By the end of the project, over 90% of the .Net instruction set

and 77% of the .Net standard library could be translated. A declarative micro-

language was built as part of the project to manage complexity. In addition,

the pluggable design of the project allowed a number of stack to register code

mapping algorithms to be compared.

Special Difficulties

None.

i

Declaration

I, Jonathan Worthington of Emmanuel College, being a candidate for Part II of

the Computer Science Tripos, hereby declare that this dissertation and the work

described in it are my own work, unaided except as may be specified below, and

that the dissertation does not contain material that has already been used to any

substantial extent for a comparable purpose.

Signed

Date

ii

Contents

1 Introduction 1

1.1 Virtual Machines . 1

1.1.1 The .Net Common Languages Runtime 2

1.1.2 Parrot . 3

1.2 Options For Interoperability . 4

1.2.1 Modify The Compiler . 4

1.2.2 Embed . 4

1.2.3 Bytecode Translation . 5

1.3 Aims Of The Project . 6

2 Preparation 9

2.1 Understanding The Core Functional Requirement 9

2.1.1 Translating Metadata . 9

2.1.2 Translating Instructions 10

2.1.3 Stack To Register Mapping 10

2.1.4 Tracking The Stack Type State 11

2.2 Non-functional Requirements . 11

2.2.1 Manageable Complexity 11

2.2.2 Conformance To Parrot Conventions 12

2.2.3 Robustness . 12

2.2.4 Performance . 12

2.2.5 Standalone . 13

2.3 System Design . 13

2.3.1 The Big Picture . 13

2.3.2 The Metadata Translator 13

2.3.3 The Instruction Translator 15

2.3.4 PIR Compilation . 17

2.4 Software Engineering . 17

iii

3 Implementation 19

3.1 Digging Into The Metadata Translator 19

3.1.1 Writing The Initial PMCs 19

3.1.2 Generating Classes And Method Stubs 20

3.1.3 Generating Locals And Parameters 21

3.1.4 Getting Stressed Early . 22

3.2 Building The Instruction Translator 23

3.2.1 Implementing The Translator Builder 23

3.2.2 Implementing A Basic SRM 24

3.3 Translating Basic Instructions . 25

3.3.1 Loading Locals And Parameters 25

3.3.2 Storing Locals And Parameters 26

3.3.3 Arithmetic And Logical Operations 27

3.3.4 Branches . 27

3.3.5 Checked Arithmetic . 29

3.3.6 Conversions . 30

3.4 Calling . 31

3.4.1 Non-virtual Calls . 31

3.4.2 Virtual Calls . 32

3.4.3 Mapping Static Overloading Onto MMD 32

3.4.4 Translating The Factorial Program 33

3.5 Object Oriented Constructs . 33

3.5.1 Instance Fields . 33

3.5.2 Static Fields . 34

3.5.3 Inheritance . 34

3.5.4 Interfaces . 35

3.5.5 Abstract Classes . 35

3.6 Arrays . 35

3.6.1 Parrot’s Support For Arrays 36

3.6.2 Array Creation . 36

3.6.3 Loads And Stores . 36

3.6.4 Getting Array Length . 36

3.7 Managed Pointers . 37

3.8 Exceptions . 37

3.8.1 Contrasting .Net And Parrot 37

3.8.2 From Protected Regions To Pushes, Pops And Marks . . . 38

3.8.3 Typed Handlers . 38

3.8.4 Finally Handlers . 39

3.9 Value Types . 40

iv

3.9.1 Value Types Become Classes With A Property 40

3.9.2 Initialization . 40

3.9.3 Copy On Load . 40

3.9.4 Box and Unbox Instructions 41

3.10 More Advanced SRM Modules . 41

3.10.1 Mapping The Stack Onto Registers 41

3.10.2 Adding The Lazy Moves Optimization 42

4 Evaluation 43

4.1 Evaluating The Translator . 43

4.1.1 Constructs And Instructions Translated 43

4.1.2 Translating The .Net Class Library 44

4.2 Comparing SRM Modules . 46

4.2.1 Generated Code Quality 46

4.2.2 Generated Code Performance 48

4.2.3 Translation Time . 49

4.3 Comparing Performance With A .Net VM 50

4.4 Software Engineering Evaluation 50

5 Conclusion 51

5.1 Bytecode Translation Works . 51

5.2 Code Less, But Smarter . 52

5.3 Future Directions . 52

Bibliography 53

A Sample Regression Testing Script 55

B Recursive Calling Regression Test 61

C SRM Comparison Benchmark 63

D Software Engineering 65

D.1 Planning Good Software Engineering 65

D.1.1 Write The Documentation 65

D.1.2 Regression Testing . 65

D.1.3 Backups . 66

D.1.4 Version Control . 66

D.1.5 Tools . 67

D.2 Evaluating Software Engineering 67

D.2.1 Implementation . 67

v

D.2.2 Documentation . 68

D.2.3 Regression Testing . 68

E Managed Pointers 69

E.1 Considering Possible Parrot Safety Problems 69

E.2 A Managed Pointer PMC . 70

E.3 Managed Pointers To Array Elements 70

E.4 Managed pointers to fields . 70

E.5 Managed pointers to registers . 70

F Project Proposal 73

vi

Acknowledgements

First and foremost I am very grateful to Dr. Tim Griffin, who has been a constant

source of advice, inspiration and friendship throughout the project. I would also

like to thank the many other people from the Computer Laboratory at Cambridge

University who have given their time to listen to my ideas and/or provided en-

couragement. These include Dr. Neil Dodgson, Prof. Alan Mycroft, Dr. Arthur

Norman, Kate Taylor and Prof. Glynn Winskel.

I probably would never have embarked on this project had it not been for my

involvement with developing the Parrot virtual machine, and I owe a great deal of

thanks to the Parrot development team for encouraging my interest in the field.

Their help and encouragement has been valuable throughout this project. While I

suspect there are names that I have missed from this list, the following people have

helped in a wide range of ways, from commenting on my ideas through to fixing

bugs in Parrot that would have hindered development of the translator: Leopold

Toetsch, Jerry Gay, Chip Salzenberg, Will Coleda, Larry Wall and Nicholas Clark.

Also, thanks to Paolo Molaro from the Mono Project.

I am also very thankful to my proof readers, who found all of the little mistakes

that managed to creep in: Ian Saunders, David Cornish and Leopold Toetsch.

Last but not least, much thanks goes to the many friends who have kept

me vaguely sane throughout the project, listened to my ramblings about it that

probably made no sense whatsoever and even made me food to fuel the late night

hacking sessions. No list of names this time, but you know who you are and you

are all wonderful people.

vii

viii

Chapter 1

Introduction

Love virtual machines did he,

Shared libraries made his day.

But libraries for VM B,

Wouldn’t work on VM A.

Compiling high level languages down to code for a virtual machine instead

of native code is becoming increasingly popular. Virtual machines, such as the

JVM, the .Net CLR and Parrot, abstract away the details of the underlying

hardware and operating system, simplifying porting and distributing programs.

At the same time, the use of libraries of existing code remains desirable. When

these libraries and the programs using them are written in native code, this can

be as simple as defining some common calling convention and executing a jump

instruction. With the growth of a number of virtual machines, there is a new

problem: a library may run on VM A, but the program that wishes to use it

is running on VM B. In this project I have explored one possible solution to

this problem, involving translating the code that runs on one virtual machine to

semantically equivalent code that will run on another.

1.1 Virtual Machines

The two virtual machines that were selected for use in this project are the .Net

CLR (Common Language Runtime) and Parrot. Translation will be performed

from the .Net CLR to Parrot.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The Mono project is named after the Spanish word for monkey.

1.1.1 The .Net Common Languages Runtime

The .Net CLR, part of the Common Languages Infrastructure, was developed

by Microsoft and has been published as an ECMA1 standard[4]. There is also

an open source implementation called Mono, the name coming from the Span-

ish word for monkey (figure 1.1). It is a stack based virtual machine designed to

support multiple languages, achieving interoperability between them by requiring

that they meet the Common Language Specification. The CLS lays down a num-

ber of restrictions (for example, multiple inheritance is forbidden). It provides

support for a range of high level language constructs, including:

• Classes, fields and methods

• Interfaces

• Single inheritance and multiple interface implementation

• Method calling, overriding (providing virtual methods) and overloading

• Delegates (safe function pointers)

1http://www.ecma-international.org/

1.1. VIRTUAL MACHINES 3

• Arrays

• Exceptions

The runtime provides garbage collection and, through implementing certain

class library methods inside the virtual machine, abstracts away the underlying

operating system while providing file and network access and threading support.

1.1.2 Parrot

The Parrot virtual machine project was started by the Perl community, the name

coming from an April Fool’s day joke that had the Perl and Python languages

being merged to create a new language called Parrot. This reflects the intention

that Parrot should support many languages and allow interoperability between

them. I have been involved with Parrot development for almost three years,

writing code and documentation and giving talks[6][5].

Parrot is a register machine[3] with variable sized register frames. It provides

for the rich runtime requirements of languages like Perl 5, Perl 6, Python and

Ruby, which may require their parsers to be available, enable a lot to be done

symbolically (by name) and even allow inheritance hierarchies to be changed or

new methods to be added to classes.

Interoperability is achieved through PMCs (Parrot Magic Classes). A PMC

defines a type that implements some subset of a fixed set of v-table methods.

These methods represent common operations such as negation, increment, keyed

access (e.g. for implementing an array) and so on. This way types can provide

language specific behaviour (for example, incrementing the string “ABC” in Perl

gives the result “ABD”, but doing so in Python will throw an exception).

Parrot provides support for a wide range of language features, including:

• Subroutines

• Object orientation - classes, fields, methods, objects and multiple inheri-

tance

• Closures

• Continuations

• Coroutines

• Exceptions

4 CHAPTER 1. INTRODUCTION

• Direct and indirect subroutine and method calling with continuation pass-

ing style and optional multi-method dispatch2

• Many built-in types, such as arrays and hash tables

• Namespaces

• Calls back into language compilers at runtime

Like the .Net runtime, Parrot provides garbage collection. Access to features

provided by the underlying operating system are through a mixture of built-in

PMCs and special instructions.

1.2 Options For Interoperability

A number of options are available for achieving interoperability between virtual

machines.

1.2.1 Modify The Compiler

Libraries tend to be written in some high level language. One possible solution

would be to re-implement the compiler for that language so that it emits Parrot

instructions rather than .Net ones. If the compiler was available to modify, this

might only involve changing the code generation phase.

A major problem with this approach is that it relies on the source code for the

library being available, and even if it is the source code for other libraries that it

depends on may not be. Also, this is not a good general solution to the problem,

since .Net was designed to support many languages. Therefore there will be many

compilers that need to be modified. In its favour, provided it sticks to the defined

conventions it would produce real Parrot bytecode that should interoperate well

with programs written in other languages running on the Parrot VM.

1.2.2 Embed

Virtual machines tend to have an embedding interface; Mono, the open source

implementation of the .Net CLR, is no exception[7]. The Mono VM could be

embedded within Parrot and “proxy objects” provided that appear to be normal

2I’m using MMD rather than overloading here to indicate that in Parrot, what method to

call is decided at runtime; with the .Net CLR this is fixed at compile time.

1.2. OPTIONS FOR INTEROPERABILITY 5

Parrot objects, but actually just wrap around a .Net object and forward field

accesses, method calls and other such operations to the embedded .Net VM.

The advantage of this approach is that you reach a basically usable solution in

a short space of time compared to the other approaches described here. However,

there are a lot of gaps to bridge between the two virtual machines. For example,

consider instantiating a .Net class from Parrot code. For a truly transparent

solution, that should look the same as instantiating a class that was implemented

in code running on the Parrot VM. To achieve this, all .Net classes need to be

registered in some way with the Parrot VM. There are other situations where

similar solutions - duplicating entities in the Parrot VM that exist in the .Net

VM - are required. Despite appearing to be an easy answer at first glance, once

you start asking questions about whether X or Y “just works” this approach

starts to fall down.

The other problem is with regards to memory usage and performance. Mem-

ory usage is going to be painful anyway since both VMs have to be loaded into

memory; the duplication of state that is often required to achieve transparency

only makes the situation worse. Performance is also hit hard. At startup both

VMs have to initialize, leading to slower startup times. Performance across the

boundary between the VMs will also be poor. Consider calling a .Net method

from Parrot code; first a call would be made on the proxy object, which in turn

uses the .Net embedding interface to actually make the method call. That still

leaves us to consider issues relating to the differing calling conventions. When

you consider that both of these virtual machines are capable of JIT compiling

some calls to native code, the performance hit becomes apparent. That said,

once the call into the .Net code has been made, performance should be good.

1.2.3 Bytecode Translation

This approach takes the (binary) code that would run on one virtual machine

and translates it to code that will run on another. In the .Net to Parrot case,

it takes a .Net EXE or DLL file and outputs a PBC (Parrot Bytecode) file.

.Net instructions and constructs are mapped to semantically equivalent Parrot

instructions and constructs (figure 1.2).

Translating at this level means that the translation is independent of the high

level language, so compilers need not be modified. It also lacks the issues that

embedding a .Net VM had - the process of running the translated code and call-

ing into it is just the same as for any other language that compiles to Parrot.

Another nice property of bytecode translation is that if each .Net instruction can

be translated into one or more Parrot instructions that have equivalent seman-

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Bytecode Translation Overview

tics then, by well founded induction with translated instruction as base cases,

the entire translated program should have the same semantics as the original

program.

Despite these good properties, bytecode translation is not a simple solution.

Stack code needs to be turned into register code and some .Net constructs require

non-trivial transformations to provide equivalent semantics on Parrot. Producing

good quality code may be difficult; compilation throws away information that

may have helped pick more appropriate Parrot instructions. A weakness over the

embedding approach is that it takes much longer before real world .Net code can

be run on Parrot.

1.3 Aims Of The Project

The project aimed to explore the bytecode translation approach to virtual ma-

chine interoperability by designing and implementing a .Net CLR to Parrot trans-

lator. As the time available to complete the project would not allow for a complete

translator to be implemented, I selected a subset of .Net CLR functionality to

translate. This included instructions and constructs relating to:

• Arithmetic and logical operations

• Branching and comparison

• Classes and objects

• Fields and methods (both instance and static)

• Constructors, class initializers and finalizers

• Method calling, including method overriding and overloading

1.3. AIMS OF THE PROJECT 7

• Exceptions

• Type casting and coercion3

• Managed references

• Arrays

The translator was to be considered a success if it translated programs limited

to using these features. As a more substantial test, I planned to apply the

translator to the Mono implementation of the .Net Foundation Class Library,

consisting of a total of over 5,800 classes spread over 40 .Net libraries.

From the outset the intention was to release the translator into the Parrot

community once this project was over, making a high quality implementation that

would enable other developers to contribute in the future an important secondary

aim.

3Casting is change of type, while a coercion also changes the representation.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

So a translator he conceived;

Designed so it would be,

Declarative and pluggable,

To manage complexity.

2.1 Understanding The Core Functional Re-

quirement

The key functional requirement is translating .Net bytecode into semantically

equivalent Parrot bytecode. However, there is more to bytecode translation than

simply mapping one instruction to another. The main problem breaks down into

four sub-problems, which will later map to concerns that are separated out in the

design.

2.1.1 Translating Metadata

.Net programs are not solely described by a sequence of instructions but also by

metadata. This metadata is mostly stored in a series of tables, each table de-

scribing a particular entity and often referencing rows in another table, somewhat

like a relational database. However, an extent-list style approach is used to avoid

fully representing the relations.

Entities described by the metadata tables include:

• Types defined in this file

• Methods that a type has

9

10 CHAPTER 2. PREPARATION

• Parameters that a method takes and their types

• Fields that a type has

• Signatures

• Other modules (.Net libraries) that this one depends on

• Types imported from other modules

• Members (methods and fields) imported from other modules

These metadata tables are referenced by some .Net instructions. For example,

the call instruction, which calls a method, specifies a row in the MethodDef table

(methods defined in this file) or the MemberRef table (methods defined in another

module). Therefore, the metadata is needed during instruction translation.

2.1.2 Translating Instructions

Each row in the MethodDef table points to a method body. This contains a small

header, followed by a sequence of .Net instructions, optionally followed by an

exception handlers table. The sequence of .Net instructions defines the method’s

semantics.

.Net instructions have variable length. The instruction always starts with an

instruction code that may be one or two bytes in length, followed by zero or

more arguments. The number of arguments is usually constant; only the switch

instruction takes a variable number of arguments (the count being specified as

the first argument). Note that instructions such as add take no arguments, but

instead take their operands from the top of the stack.

The instruction translator needs to map each .Net instruction to one or more

semantically equivalent Parrot instructions.

2.1.3 Stack To Register Mapping

.Net is a stack machine whereas Parrot is a register machine. This means that

items that would be on the .Net stack at runtime instead need to be placed

into Parrot registers. Furthermore, when translating instructions that would

pop operands from and push results onto the stack, the registers containing the

operands or results now need to be explicitly provided. For example, the .Net

code to add the numbers 19 and 23 together would look like this:

2.2. NON-FUNCTIONAL REQUIREMENTS 11

ldc.i4 19 // Load 19 onto the stack

ldc.i4 23 // Load 23 onto the stack

add // Pop top 2 stack items, add, push result

Whereas in Parrot assembly, it may look like this:

set I1, 19 # Load 19 into integer register 1

set I2, 23 # Load 23 into integer register 2

add I0, I1, I2 # I0 becomes I1 + I2

2.1.4 Tracking The Stack Type State

In .Net, values of a range of types may be placed on the stack. Similarly, Parrot

has several register types. Therefore, the translator needs to select the correct

Parrot register type to use when placing an item that would be on the stack into

a register. To do this, the types of data on the stack need to be known.

.Net instructions often convey little about the type of data they are operating

on. For example, the add instruction in .Net could add two floats or two integers;

its behaviour depends on the contents of the stack. Instead, .Net requires that the

types of values on the stack, known as the stack type state, can be determined

statically at any point in a program by a single pass through the instructions

leading up to that point. This is achieved using a data flow analysis, made

possible because the types of values being loaded onto the stack are always known

and the way that each instruction transforms the stack type state is specified.

2.2 Non-functional Requirements

This section looks at some of the requirements that were placed on the design of

the translator that were not related to its ability to meet the aims of the project,

but that I felt were highly desirable.

2.2.1 Manageable Complexity

This project has a number of aspects that are closely coupled; while metadata

translation can happen alone, instruction translation, stack to register mapping

and stack type state tracking are all very intimately related. As in real life,

getting too intimate leads to excessive complexity. Therefore some effort was

required to keep these three aspects of the translation process clearly separated

from each other and have well defined boundaries between them.

12 CHAPTER 2. PREPARATION

Additional complexity came from the size of the project. I was expecting to

reach being able to translate between 150 and 200 instructions, so any bugs that

spanned the way many instructions were translated could have been painful if

you had to correct their translation code by hand.

2.2.2 Conformance To Parrot Conventions

As far as is possible, the code generated by the translator should conform to

Parrot conventions. (Some of these, such as calling conventions and name space

policy, are implied by the functional requirements.)

2.2.3 Robustness

The translator will not implement all .Net features and therefore will not be able

to translate all code. However, it should be possible for it to recover gracefully

and continue if it does run into a class that it cannot translate, perhaps because

it encountered an unknown instruction or failed to track the stack type state

properly. Equally, not all metadata tables will be “understood” by the translator,

but that should not stop it from reading other tables, even if they follow one that

is not used.

2.2.4 Performance

There are two areas that performance matters.

Translation Performance

The time taken to produce the translation is not critical since the translation

is usually only performed the one time. It is better to spend more time at

translation time and less at runtime if there is a trade-off to be made. However,

there is a cut-off point - the translator should be able to translate some of the

.Net class library and this contains some large modules. For example, the Mono

Project’s implementation of mscorlib.dll contains some 1354 types and is 1.85

MB in size. Taking a minute or two to translate this on a reasonably modern

workstation is acceptable; taking over ten minutes is not.

Runtime Performance

If the translation produced runs an order of magnitude more slowly than the

original code did under the .Net CLR then it may be too slow to be usable in any

2.3. SYSTEM DESIGN 13

real world situation. Equally, expecting the translated code running on Parrot to

perform as well as the original code running under the .Net CLR is unreasonable;

Parrot is at an earlier stage in its development, is less optimized and by its nature

can not perform as well as the .Net CLR in some areas, since it can make fewer

assumptions.

2.2.5 Standalone

Ideally the translator should be able to run anywhere that Parrot can. The easy

way to achieve this is to ensure that the only dependency that the translator

has is on Parrot itself. Practically this puts some limits on the languages that

are chosen to implement the translator. As much of it as possible should be

implemented in something that compiles down to Parrot bytecode. Parrot itself

and other Parrot extensions tend to be written in C, so for anything that Parrot

bytecode is not suitable for this is going to be the language of choice.

2.3 System Design

2.3.1 The Big Picture

Figure 2.1 describes the translation process, starting with an input .Net module

and concluding with a Parrot bytecode file.

The metadata translator takes the .Net module, reads its metadata tables,

and builds a tree of PMCs (Parrot data structures that can be manipulated

from both C and Parrot programs). Control is then passed to the instruction

translator, which uses the data collected into the PMCs and the .Net instruction

stream to produce equivalent Parrot Intermediate Representation code. Finally,

this PIR is compiled to Parrot Bytecode; the PIR compiler is a part of Parrot

and invokable from Parrot programs.

2.3.2 The Metadata Translator

The input to the metadata translator is a binary file. More specifically, it is a PE1

file that contains a short loader that runs on Windows to load the .Net runtime.

These are of little interest to the translator beyond validating the file is in the

expected format and pointing to where the .Net metadata tables start.

I decided that, since there were no stable Parrot-targeting languages at the

start of the project that were good for handling binary files, the metadata trans-

1The Windows Portable Executable format by Microsoft.

14 CHAPTER 2. PREPARATION

Figure 2.1: System overview

lator should be implemented in C. C is particularly strong when it comes to

processing binary data quickly and, while C usually comes with the curse of

memory management, the PMCs that the data was to be stored in are eligible

for garbage collection by the Parrot runtime.

PMCs themselves are implemented in C. I chose to implement PMCs to rep-

resent a row from metadata table that was of interest. An existing array PMC

would be used to hold all rows in a table. PMCs can point to an underlying

C structure; this structure was used to store the metadata that was read and

then PMC methods were implemented to access that data from Parrot bytecode,

since Parrot programs can only access the data through the public interface of

the PMC and not the underlying structure directly.

I could have chosen to implement the metadata translator completely in PIR,

but this would have made it a much more time-consuming implementation task.

2.3. SYSTEM DESIGN 15

2.3.3 The Instruction Translator

The instruction translator is invoked for each method that needs to be translated

and should generate PIR for that method. I decided that the instruction trans-

lator should be implemented in PIR. This is quite tedious to write, but that was

not much of an issue since the instruction translator was to be...

Begotten, Not Created

To manage the complexity of the instruction translator, it is desirable to keep

instruction translation, stack to register mapping and stack type state tracking

apart. However, all of these are very tightly linked and translating any given

instruction involves all three of them. At the same time, to achieve good perfor-

mance in the instruction translator “straight line” code is preferable.

The solution I came up with has the instruction translator being generated

by a script, known as the translator generator, from a file that describes how

to translate each .Net instruction to a Parrot instruction and a stack to register

mapping module. Since this was essentially a text-munging job, the script to

handle this was written in Perl. Perl is also used by other Parrot build and

testing tools, so the standalone requirement (2.2.5) is not broken.

Declarative Instruction Translation[2]

Writing lots of repetitive code is not only really boring, but often also results in a

program that is difficult to maintain. The code to translate each of the 200+ .Net

instructions to PIR is often very similar, making it a good candidate for boring

me and a likely source of errors. Therefore, I created a small declarative “lan-

guage” to describe how each instruction should be translated. While it needed to

allow PIR to be hand crafted for more complex instructions, it provided a trivial

and compact way to specify how to translate many of them. For example, the

translation rule for the add instruction looks like this:

[add]

code = 58

pop = 2

push = 1

class = op

instruction = ${DEST0} = ${STACK0} + ${STACK1}

The name of the instruction, in this case “add”, starts the declaration. The

“code” field is the number of the .Net instruction, “pop” is the number of

16 CHAPTER 2. PREPARATION

operands that it pops off the stack and “push” is the number of results that

it pushes onto the stack. The “class” field describes what type of instruction

this is; this is used to mark instructions that will need to be handled in special

ways, such as loads, stores, branches and calling related instructions. Finally, the

“instruction” field specifies what PIR to emit for this instruction. This can op-

tionally be replaced with a “pir” field, which provides PIR code to insert into the

generated translator that generates the PIR for the instruction. An additional

field, “arguments”, is used to specify any arguments the instruction takes.

In the “instruction” field some meta-variables were used. Syntactically they

consist of a dollar sign followed by the name of the meta-variable in curly brack-

ets. These are substituted for by the translator generator (that is, when the

instruction translator is being built). In this case, ${STACK0} and ${STACK1}

correspond to the two top stack locations and ${DEST0} corresponds to the stack

location that the result would be pushed to.

Pluggable SRM (Stack to Register Mapping)

There is more than one way to turn stack code into register code. One easy to

implement approach that has the advantage of “obvious correctness” is to use an

array to emulate the stack, popping values from it into registers, then performing

the instruction, then pushing any results that were also placed in registers back

onto the it. However, the runtime performance of the generated code will be

poor.

At the other end of the scale, we could map each stack location onto a register

and try to perform on-the-fly “copy prorogation” to eliminate redundant moves.

Implementing this is more subtle as control flow needs to be accounted for, but the

register code that is generated looks like something you might expect a vaguely

sensible compiler to produce.

The first approach has the advantage that it can be implemented quickly and

that it will probably work correctly. This is great for development work, but

the second approach is what is needed for production use. Since development is

on-going even when production use is taking place, and also to enable new ideas

for SRM to be tested, I decided that SRM should be pluggable, allowing you to

choose which one you want when you build the translator.

This meant that an interface that would support many different approaches

to SRM was required. It turns out that by grouping instructions into the classes

discussed in the last section and providing “pre” and “post” events for each

of those instruction types, you achieve an interface that is flexible enough to

implement a wide range of SRM modules.

2.4. SOFTWARE ENGINEERING 17

Some of the handlers are passed parameters and/or required to initialize cer-

tain meta-variables (which are mapped to real variables by the translator gen-

erator). For example, since the SRM decides which registers map to conceptual

stack locations, it is responsible for setting ${STACKn} and ${DESTn}.

Stack Type State Tracking

As discussed in the functional requirements, the stack type state needs to be

tracked. The translator generator would insert the code to do the book-keeping

for this. The current stack type state would be made available through the

$STYPES meta-variable.

Type information is added to the type state on a load instruction, leaves on

a store instruction and is transformed by other instructions. Instructions that

transform the type state need to provide PIR that implements the transformation

through an additional “typeinfo” field in its translation rule. This usually makes

an entry in the array $DTYPES specifying the types of the results. The trans-

formation code and SRM modules are never meant to directly modify $STYPES.

2.3.4 PIR Compilation

As mentioned, this is delegated to the Parrot PIR compiler. However, it is worth

discussing why I chose to generate PIR rather than Parrot bytecode directly.

Firstly, Parrot is still undergoing development and while PIR is generally stable,

the Parrot bytecode format is liable to change. Secondly, PIR also hides away the

underlying details such as the calling conventions, making it easier to generate.

Thirdly, textual output is far easier to debug than binary output. Finally, the

PIR compiler will do register minimization, meaning that the translator did not

need to implement this. These factors greatly outweigh the possible translation

performance improvements.

2.4 Software Engineering

Owing to space limitations, discussion of testing methodology, backup policy,

documentation requirements and choice of development tools can be found in

appendix D.

18 CHAPTER 2. PREPARATION

Chapter 3

Implementation

For weeks he toiled, day and night,

Fuelled by chocolate and caffeine.

And wove his dreams into code:

A translator like none e’er seen!

3.1 Digging Into The Metadata Translator

In any sizeable implementation task there is more than one way to begin. The

best starting point is the one that gives you something to test as early as possible,

and the metadata translator fits this requirement since it is not dependent on any

other part of the system and can be tested alone.

The final metadata translator would need to read and store data from many

tables, but not all of this data would be needed to satisfy the needs of the ini-

tial instruction translator. Therefore a fairly minimal metadata translator was

implemented at this stage, keeping in mind that much more would need to be

added later.

3.1.1 Writing The Initial PMCs

The initial metadata translator required four PMCs to be implemented.

• DotNetAssembly, used to represent a .Net EXE or DLL file

• DotNetClassMetadata, storing metadata about a .Net type defined in the

file

• DotNetFieldMetadata, storing metadata about a field belonging to a class

defined in the file

19

20 CHAPTER 3. IMPLEMENTATION

• DotNetMethodMetadata, storing metadata about a method belonging to a

class defined in the file

DotNetAssembly would have an array of DotNetClassMetadata PMCs and

these in turn would have arrays of DotNetFieldMetadata and DotNetMethod-

Metadata PMCs.

The only PMC that was to be instantiated from PIR was DotNetAssembly.

This PMC would contain a method to load a .Net assembly, read the metadata

and instantiate other PMCs to represent the classes, fields and methods that were

described. Further methods on DotNetAssembly objects would return the array

of DotNetClass PMCs and so on. Essentially, the flat binary metadata tables

were being turned into a tree of PMCs that could be walked in PIR code.

While implementing these PMCs was mostly just a matter of writing the

code, there was one issue that needed some care. PMCs are eligible for garbage

collection, and since this is reachability based it was important to ensure that

every PMC in the tree would get marked alive. Part of this was implementing a

custom mark method (one of a PMC’s standard v-table methods) that tells the

garbage collector about any other PMCs that this one references. The other part

was making sure that new PMCs got placed into the tree as soon as they were

created. For example, rather than creating an array PMC, populating it and

then adding a reference to it from its parent, the reference should be added right

after creation.

3.1.2 Generating Classes And Method Stubs

With the metadata describing classes, fields and methods stashed in PMCs, it

was possible to write some simple code to iterate over the classes and generate

PIR to register them and declare their attributes (the Parrot terminology for

what .Net calls instance fields).

In Parrot a class is created by placing its methods into a namespace with the

fully qualified name of the class and using the newclass instruction, supplying

this namespace. This instruction registers the class and hands back a ParrotClass

PMC that can then be used with the addattribute instruction.

.namespace ["Testing.Test"]

.sub "__onload" :load

.local pmc type

type = newclass "Testing.Test"

addattribute type, "x"

3.1. DIGGING INTO THE METADATA TRANSLATOR 21

addattribute type, "y"

.end

Note that, unlike the .Net CLR, classes are created at runtime. To ensure

this happens before a class is instantiated we mark the Parrot sub containing this

initialization code with the “:load” modifier, meaning that it runs when Parrot

bytecode file is loaded.

In addition to the class registration code, I could now also generate empty

Parrot method bodies for each method in the class; later, the instruction transla-

tor would be called at this point to translate the method body to PIR. An empty

method body for a method named “Add” would look like this:

.sub ‘‘Add’’ :method

.end

In Parrot a method, marked with the “:method” modifier, is a special case of

a subroutine. Unlike a normal subroutine, it assumes the first parameter is the

invocant and makes it available under the name “self”. It also allows for virtual

calls to be made on it, thus supporting overriding.

A later modification checked whether the method’s static flag was set in the

.Net metadata. This signifies that the method is a class method, which in Parrot

maps to a normal subroutine. In this case, the “:method” modifier is not emitted.

3.1.3 Generating Locals And Parameters

The parameters that a method takes and its local variables are both described in

the metadata. More specifically, they are described as signatures that are stored

in a compressed1 binary format in a blobs heap. The metadata tables provide an

offset into this heap.

I implemented a simple Signature PMC to help with reading signatures, han-

dling the decompression and throwing an exception if an attempt was made to

read past the end of the signature. The code to parse the local and parameter

signatures was implemented in PIR.

Given the following method, written in C# and compiled down to .Net byte-

code:

1The simple compression algorithm only deals with integers, using the upper bit(s) of the

first byte to specify how many bytes describe the number. For example, a 0 in the MSB means

“this number is fully described by this byte”, whereas the upper two bits being “10” means

“this number is fully described in this byte and the next”.

22 CHAPTER 3. IMPLEMENTATION

public int Add(int x, int y)

{

int z = x + y;

return z;

}

The metadata translator would now produce the following Parrot code:

.sub "Add" :method

.param int arg1

.param int arg2

.local int local0

.local pmc arg0

arg0 = self

.end

Here, “.param” is PIR syntax that hides away the Parrot calling conventions;

when compiled to Parrot bytecode, the names arg1 and arg2 will be mapped to

registers. Similarly, “.local” declares a name for a register that will hold a local

variable.

Additionally, notice that the register types have been specified, using the PIR

keywords int and pmc. The .Net types have been extracted from the signatures,

and another routine has been used to map the .Net types to an appropriate Parrot

register type.

The final two lines are probably the most curious. Recall that when the

“:method” modifier is used, the invocant is placed into a register and the name

self is automatically declared as an alias for that register. For uniformity, the

name arg0 is being introduced and assigned the reference stored in self; since

PIR performs register allocation, in the Parrot bytecode that is produced these

two names would end up mapping to the same register and the assignment would

be eliminated. This is done to ease code generation of ldarg (load argument)

instructions.

3.1.4 Getting Stressed Early

With the first cut of the metadata translator in existence, I provided a large DLL

from the .Net class library to it as an early stress test. There was no reason

why it should not have been able to produce class registration code for each class

along with method stubs for each of their methods. After a few small bugs were

flushed out, this result was achieved.

3.2. BUILDING THE INSTRUCTION TRANSLATOR 23

3.2 Building The Instruction Translator

Three things were needed to build the instruction translator:

• A translation rules file providing the declarative translation rules and type

state transformation code for some instructions

• A stack to register mapping module

• A build tool that uses these to generate an instruction translator

The contents of the translation rules file will be explored more in the next

section, the build tool and a simple SRM module will be discussed here and more

advanced SRM modules will be discussed at the end of this chapter.

3.2.1 Implementing The Translator Builder

The translator builder generates PIR code for the instruction translator. This

in turn will take a .Net instruction stream and generate semantically equivalent

PIR code. The translator builder is implemented in Perl and moves through a

number of steps.

Rules File Parsing

This step parses the translation rules file and places its contents in a data struc-

ture that allows easy access to the data for each rule. Some validation is done

here to ensure the the translation rules are sane.

Loading A Stack To Register Mapper

Next, an SRM module must be loaded. The module to be loaded is specified

as a command line arguments to the script. All modules adhere to a standard

interface defined by the class SRM::Base, from which they all inherit.

Emitting Setup PIR

This step outputs a hand-crafted chunk of PIR that contains the setup code for

instruction translator. The SRM module’s pre_translate method is also called,

and any code that it returns is placed into the instruction translator too. This

gives the stack to register mapper a chance to set up and initialize any state that

it will use during the translation process. It may also concatenate data onto the

meta-variable ${INS} if it needs to place anything at the start of the translated

PIR that the instruction translator produces.

24 CHAPTER 3. IMPLEMENTATION

Building Dispatch Code

Instruction translation is driven by a loop that translate an instruction each

iteration. It is desirable to be able to jump to the translation code for a particular

instruction efficiently. This step emits PIR code that ensures that this will happen

in O(log n) time, where n is the number of instructions we have translation rules

for. It operates very much like a binary search.

Building Rule Translation Code

This step takes a translation rule and generates code to translate the instruction

in the way described by the rule. The first stage of this is similar for all rules;

first a label is emitted that the dispatch code jumps to followed by some trace

code to aiding debugging the translator (a command line switch turns this on

and off). Following this, code is generated to read in any arguments that the

instruction takes. These are made accessible to the translation code through the

${ARGn} metavariables.

What happens next is dependent on the class of the instruction. Recall that

there are several classes of instruction (“op”, “branch”, “load”, “store” and

“call”). For all classes, a “pre” SRM method will be invoked before emitting

the code to translate the instruction and a “post” SRM method afterwards (for

example pre_op and post_op). Beyond that, the behaviours differ. For exam-

ple, instructions of class “branch” need to propagate the stack type state to all

possible branch destinations, not just the next instruction.

This step is where the three aspects to instruction translated are all brought

together and interwoven. It is important to understand that the “pre” and “post”

calls into the SRM module are calls made by the translator builder, but no such

concept as an SRM module exists in the generated instruction translator.

Emitting Trailing PIR

This step is very similar to “Emitting Setup PIR”. Near enough repeating that

here would probably only serve to give you a sense of deja vu, but if you like that

feeling you can always go back and read it again.

3.2.2 Implementing A Basic SRM

The simplest possible SRM module to implement uses an array to emulate the

.Net stack. Amongst Parrot’s built-in PMCs is ResizablePMCArray, which im-

plements the push and pop v-table methods for all register types. The SRM will

3.3. TRANSLATING BASIC INSTRUCTIONS 25

use these operations to place operands into registers for each instruction and to

put any results back onto the stack. For example, the translated output of the

“add” instruction when the top two items on the stack are integers would be:

$I0 = pop s # Generated by pre_op

$I1 = pop s # Generated by pre_op

add $I2, $I0, $I1 # From the translation rule

push s, $I2 # Generated by post_op

Clearly, this does not produce good code, but it does produce working code,

which is all that was needed at the early stages of the implementation.

3.3 Translating Basic Instructions

Despite the heading, this section covers the translation of over half of the .Net

instruction set. These instructions are basic in the sense that they require little

or no extra translation machinery beyond what has been developed up to this

point. They provide the basic building blocks of all programs - arithmetic, logical

and branching operations along with the movement of data from locals or passed

parameters onto the stack and vice versa.

3.3.1 Loading Locals And Parameters

In Parrot, locals are located in registers named local0, local1, etc. .Net has a

number of instructions for loading local variables onto the stack, but they are all

special cases of one of basic ldloc instruction.

The most trivial cases to translate are the instructions ldloc.0 through

ldloc.3. A translation rule for one of these instructions is written as follows:

[ldloc.0]

code = 06

class = load

pop = 0

push = 1

pir = ${LOADREG} = "local0"

typeinfo = ${LOADTYPE} = ${LTYPES}[0]

The first five lines are obvious in meaning, but the last two are less so. The line

starting “pir” is not specifying a Parrot instruction to emit, but instead provides

PIR code to be placed into the translator. It assigns the name of the register

26 CHAPTER 3. IMPLEMENTATION

holding the local variable we wish to load to the ${LOADREG} metavariable. This

line could have been replaced with:

instruction = ${DEST0} = local0

For load instructions that source their values from fields or indirectly, a con-

struct such as this is required. However, ${LOADREG} gives more advanced SRM

modules a chance to optimize away loads where the value is already held in a

register.

The final line gets the type of the local from the 0th element of ${LTYPES},

a metavariable that maps to an array of local variable types obtained from the

locals signature.

The more general variants of the ldloc instruction take a number (of 8 or 32

bits), meaning that a little more effort is required to construct the register name.

Loading of arguments is also very similar to this - simply replace “local” with

“arg”. The following example depicts both of these changes.

[ldarg.s]

code = 0E

class = load

pop = 0

push = 1

arguments = uint8

pir = <<PIR

${STEMP0} = ${ARG0}

${LOADREG} = "arg"

${LOADREG} = concat ${STEMP0}

PIR

typeinfo = ${LOADTYPE} = ${PTYPES}[${ARG0}]

3.3.2 Storing Locals And Parameters

Translating stores is somewhat symmetric to translating loads; for most load

instructions there is a corresponding store instruction. A typical store translation

rule looks like this:

[stloc.0]

code = 0A

class = store

pop = 1

3.3. TRANSLATING BASIC INSTRUCTIONS 27

push = 0

pir = ${STOREREG} = "local0"

Again, the final line could be written another way:

instruction = local0 = ${STACK0}

Type information is discarded from the stack type state on a store, so a

“typeinfo” declaration is not needed.

3.3.3 Arithmetic And Logical Operations

Most of the .Net arithmetic and logical instructions map directly onto Parrot

instructions. This is because both virtual machines want to be able to JIT compile

these instructions and thus define them to work in the way that typical hardware

arithmetic and logical instructions do. As an example, the translation rule for

the .Net AND (and) instruction is:

[and]

code = 5F

class = op

pop = 2

push = 1

instruction = ${DEST0} = band ${STACK1}, ${STACK0}

typeinfo = typeinfo_bin_num_op(${STYPES}, ${DTYPES})

The type state transformation code for many arithmetic and logical instruc-

tions is implemented in a subroutine since it is the same. The sub implements a

table from the .Net standard that maps the types of the operands to the type of

the result.

3.3.4 Branches

Branch instructions in .Net always have a single argument that determines the

destination of the branch. It is specified as an offset from the program counter

as it would be at the start of the next instruction and is a signed value to allow

for backward branches. To translate this to PIR, the branch destination needs

to have a label.

Before the translation of each .Net instruction, a label is emitted of the form

LABn:, where n is the program counter at that point in the program. Therefore,

28 CHAPTER 3. IMPLEMENTATION

generating a destination label is simply a case of adding the argument of the

branch instruction to the program counter for the next instruction and postfixing

it to to the string “LAB”. This is exactly what the following unconditional branch

instruction’s translation code does.

[br]

code = 38

class = branch

arguments = int32

pir = <<PIR

${ITEMP0} = ${NEXTPC} + ${ARG0}

${STEMP0} = ${ITEMP0}

${INS} = concat "goto LAB"

${INS} = concat ${STEMP0}

${INS} = concat "\n"

PIR

Meta-variables such as ${STEMP0} and ${ITEMP0} are temporary variables, in

these cases of type string and integer. They are meta-variables so the translator

builder can choose how to name them, so as to avoid naming conflicts with vari-

ables used by the translator internals. ${INS} is the PIR that is being produced,

and this translation rule just concatenates code onto it.

Conditional branches only differ in that they pop one or two values from the

top of the stack, using ${STACKn} in generating the Parrot instruction:

[beq.s]

code = 2E

class = branch

pop = 2

arguments = int8

pir = <<PIR

${ITEMP0} = ${NEXTPC} + ${ARG0}

${STEMP0} = ${ITEMP0}

${INS} = concat "if "

${INS} = concat ${STACK1}

${INS} = concat " == "

${INS} = concat ${STACK0}

${INS} = concat " goto LAB"

${INS} = concat ${STEMP0}

${INS} = concat "\n"

3.3. TRANSLATING BASIC INSTRUCTIONS 29

PIR

An additional subtlety with regard to branches is that the stack type state

needs to be propagated to the destination of the branch, not just the next instruc-

tion as it would normally be. The insertion of code to handle this is provided for

by the translator builder. Note that there is a constraint on backward branches

- the stack must be empty when they are taken unless the destination is reach-

able from instructions statically preceding it. This makes single-pass translation

possible by removing the need to locate the basic blocks first.

3.3.5 Checked Arithmetic

Checked arithmetic instructions throw an exception when the result of the com-

putation would overflow. Parrot has no corresponding instructions, but its ex-

tensibility meant that I could implement them in a dynamic op library2 that is

loaded at runtime when translated .Net code is being run. Using dynamic ops is

as simple as creating a file containing entries such as the following one:

inline op net_add_ovf(out INT, in INT, in INT) :base_core {

if (CHECK_ADD_OVERFLOW($2, $3))

{

opcode_t *ret = expr NEXT();

opcode_t *dest = dotnet_OverflowException(interpreter, ret);

goto ADDRESS(dest);

}

else

{

$1 = $2 + $3;

goto NEXT();

}

}

The body here is essentially C but preprocessed by a Parrot build tool. For

example, $1 corresponds to the first register that is given as an operand to the

instruction. The CHECK_ADD_OVERFLOW macro and similar were based upon ones

used by the Mono project3.

This op can then be used in the translation instruction:

2Think DLL file on Windows or SO file on Linux/UNIX.
3http://svn.myrealbox.com/viewcvs/trunk/mono/mono/interpreter/interp.c

30 CHAPTER 3. IMPLEMENTATION

[add.ovf]

code = D6

class = op

pop = 2

push = 1

instruction = net_add_ovf ${DEST0}, ${STACK0}, ${STACK1}

typeinfo = typeinfo_bin_num_op(${STYPES}, ${DTYPES})

The only other requirement is that a small piece of code needs to be emitted

at the start of the translated output to load the dynamic op library.

.sub __LOAD_DOTNET_OPS :load

loadlib $P0, "dotnet_ops"

.end

It would also have been possible to generate a sequence of Parrot instructions

that implemented the overflow check. This would have had better performance

in the presence of a JIT compiler, but worse performance on platforms where

Parrot has no JIT support yet due to the instruction dispatch overhead.

3.3.6 Conversions

Conversion instructions perform coercions from one type to another. The type

to coerce to depends on the instruction and the type to coerce from can be found

by examining the stack type state. For example, the conv.i2 instruction coerces

whatever is on top of the stack to a 16-bit signed integer (assuming that to do

so makes sense).

As Parrot only supports one integer type directly, there are no instructions of

this kind. Therefore, they were implemented as dynamic ops. Here is an example

of such an op:

inline op net_conv_i2(out INT, in INT) :base_core {

$1 = (Parrot_Int2) $2;

goto NEXT();

}

And here is the translation rule that uses it:

[conv.i2]

code = 68

class = op

3.4. CALLING 31

pop = 1

push = 1

instruction = net_conv_i2 ${DEST0}, ${STACK0}

typeinfo = <<PIR

${PTEMP0} = new Hash

${PTEMP0}["type"] = ELEMENT_TYPE_I2

${PTEMP0}["byref"] = 0

annotate_reg_type(${PTEMP0})

${DTYPES}[0] = ${PTEMP0}

PIR

Here new type information needs to be introduced. A type is described

by a Hash, a built in Parrot PMC implementing a hash table. The value

ELEMENT_TYPE_I2 is a constant from the .Net specification that denotes the 2-

byte signed integer type. The annotate_reg_type routine takes a type describing

hash and annotates it with some extra entries, such as the type of register that

such a value should be stored in.

3.4 Calling

The .Net CLR provides a stack based calling mechanism. Arguments are pushed

onto the stack left to right and then the method is called. If there is a return

value, it is left on the stack. The method to call is an argument to the call

instructions, specified as a row in a metadata table.

Parrot also provides standard calling conventions that attempt to cover the

needs of many languages. It uses Continuation Passing Style, and under the hood

passing is implemented as several variable argument register instructions. A Sub

PMC (or any other PMC that implements the invoke v-table method) can be

called.

3.4.1 Non-virtual Calls

The .Net call instruction does a non-virtual method call; the method specified by

the metadata token in the instruction is the one that is called, even if the method

has been overridden. This can be achieved in Parrot by looking up the method

in the namespace holding the class it belongs to, which can also be determined

from the meta-data token.

32 CHAPTER 3. IMPLEMENTATION

Assuming that registers $P1 and $I2 contain the parameters to be passed

and $I0 is to hold the return value, a call to the “factorial” method in the class

“Test” in the namespace “Testing” will translate to the PIR:

$P1000000 = find_global "Testing.Test", "factorial"

$I0 = $P1000000($P1, $I2)

Where $P1000000 is being used as a temporary to store a Sub PMC.

3.4.2 Virtual Calls

The callvirt instruction performs a virtual method call. That is, an object

currently viewed as being a Mammal that is actually some subtype Monkey of

Mammal may override some method EatBanana. Whereas call would call the

method EatBanana as defined by the class Mammal, callvirt uses the runtime

type of the object to decide which method to call. This can be translated directly

to PIR method call syntax.

$I0 = $P1."EatBanana"($I2)

3.4.3 Mapping Static Overloading Onto MMD

Both .Net and Parrot support having methods of the same name with different

signatures. However, in .Net it is up to the compiler to resolve which method

to call and to emit the correct metadata reference. As Parrot supports dynamic

languages, it is assumed that the method to be called can not be determined at

compile time and may change. A cache is used to aid performance.4

Using Parrot’s MMD mechanism will provide most of what is required to

support .Net method overloading. However, there is a problem: unlike .Net,

Parrot does not recognize different types of integers and floating point numbers

as fundamental types. For efficiency it is desirable to have all types of integers

stored in I registers, but at dispatch time Parrot will be unable to distinguish

between the two types.

A number of options exist to solve this. Name mangling the subs and then us-

ing the signature to generate the mangled name when translating the call would

work. This avoids Parrot’s MMD completely, meaning it is cheaper at runtime

4In fact, the instruction stream can be modified at runtime to just have a call to the method

that the dispatch algorithm found, so the cost of the dynamic dispatch is amortised. This

technique is known as a Polymorhpic Inline Cache.

3.5. OBJECT ORIENTED CONSTRUCTS 33

and that the intended method is always called. However, this really hurts inter-

operability with other languages running on Parrot.

Another option is to create a class for each of the .Net integer and floating

point types that derive either from Parrot’s built in Integer or Float PMCs,

naming them, for example, “@@DOTNET MMDBOX I1” for the single byte

signed integer. All methods are then annotated with :multi(...) modifiers,

which are used to specify the arguments that a method takes that participate

in multiple dispatch.5 Instead of simply specifying int for all integer types, the

more specific classes are used. Note that this will result in some boxing and

unboxing.

Under the hood, Parrot gives methods “long names” that incorporate the

signature. For non-virtual calls from within .Net, these can be generated and used

when making the call, avoiding dynamic dispatch and improving performance.

For calls made from other languages, dynamic dispatch should still be able to do

something sensible in most cases.

3.4.4 Translating The Factorial Program

Appendix B shows a (passing) regression test featuring the recursive factorial

program. As well as showing that the translation of a number of basic instructions

works, it shows that calling has been translated in such a way that both translated

.Net code and ordinary Parrot code can make calls to the factorial function.

3.5 Object Oriented Constructs

The object oriented paradigm is at the heart C# and a very significant part of

many other .Net languages. Therefore, being able to translate instructions and

constructs relating to object orientation is key to being able to translate any real

world programs.

3.5.1 Instance Fields

Instance fields are already declared by the metadata translator; the missing pieces

of the puzzle are instructions to load and store values to and from instance

fields. This is not as straightforward as might be hoped because Parrot’s object

attributes can only be PMCs, meaning that integers and floats need to be boxed

5In some languages, such as Perl 6, it is possible that only some arguments are MMD

invocants. With .Net, we must assume they all are.

34 CHAPTER 3. IMPLEMENTATION

and unboxed explicitly. For example, here is the translation of loading the integer

field named “x” of the object in register $P0:

$P1000000 = getattribute $P0, "x"

$I1 = $P1000000

The second line assigns the PMC to an integer register, unboxing the integer.

Storing is similar, apart from the box has to be created and the integer placed

into it.

$P1000000 = new Integer

$P1000000 = $I0

setattribute $P1, "y", $P1000000

Boxing is not required for fields that have a type that maps to a PMC. This

is an example of PIR generation that is dependent on the stack type state.

3.5.2 Static Fields

Static fields are essentially global variables, though with some visibility restric-

tions (which Parrot currently does not provide a way to enforce in the runtime;

since the goal is to translate verifiable .Net code, this is not a big concern). Par-

rot has find_global and store_global instructions that can be used to look

up and/or store a global in a given namespace. As every class has a namespace

of its own, a static field translates as a global in the namespace for that class.

The same boxing and unboxing requirements exist as for instance fields. Aside

from the different instruction names and the fact that there is no object to do

the lookup on, the translation is very similar to that of instance fields.

3.5.3 Inheritance

.Net supports single inheritance of a class. Parrot supports multiple inheritance,

which single inheritance is just a special case of. Every .Net class has a parent,

except System.Object which is the base of all classes.

In Parrot, parents are added to a class using the addparent instruction. The

metadata translator was extended to emit such an instruction in the initialization

method for the class.

.sub "__onload" :load

.local pmc type, parent

3.6. ARRAYS 35

type = newclass "Testing.Chimp"

parent = getclass "Testing.Mammal"

addparent type, parent

.end

This introduces an ordering constraint on class creation; a class must be

declared before any of its children. This is not an issue for the .Net CLR, since

the parent class is specified as an index into the classes metadata table. Therefore,

classes need to be sorted in order of depth in the inheritance hierarchy. Any class

that has a parent outside of the current module will already have its parent

declared, so these classes can be placed at the start of the list. Then an iterative

method is used to add all classes that have a parent in the list already, which

continues until all classes are added to the list. This results in a list of classes in

inheritance depth order in O(nD) time, where n is the number of modules and

D is the deepest inheritance hierarchy in the module.

3.5.4 Interfaces

Since Parrot currently lacks support for interfaces, they have to be “faked out”

using classes and taking advantage of multiple inheritance to add them as ad-

ditional parent classes. An interface is translated just as a class would be, but

each method contains code to throw an exception if they are invoked stating that

an interface has not been fully implemented. The constructor also throws an

exception to prevent instantiation of interfaces. This provides all of the required

semantics for valid .Net programs and safe failure at runtime otherwise.

3.5.5 Abstract Classes

Parrot also does not provide direct support for abstract classes (that is, classes

that are not completely implemented and must be subclassed). The solution is

similar to that for interfaces; the constructor and abstract methods all throw

exceptions when called.

3.6 Arrays

At the runtime level, .Net only supports one-dimensional, zero-based arrays of

fixed size. All elements must be of the same type (or a subtype of the same type).

Anything beyond this is supported through the System.Array class.

36 CHAPTER 3. IMPLEMENTATION

3.6.1 Parrot’s Support For Arrays

In Parrot, arrays are implemented using PMCs. PMCs have keyed v-table oper-

ations (that is, v-table functions that take a key as one of their parameters). For

arrays, the key is the array index and is expected to be an integer. A number of

array PMCs are built in to Parrot, however languages are free to provide their

own. The v-table mechanism used to access elements means that the interface to

the array is always the same, so translated .Net code will be able to handle being

passed a Perl array even though their behaviours are very different (Perl arrays

are resizeable, for example, where as .Net arrays are of fixed length).

3.6.2 Array Creation

In .Net arrays are created using the newarr instruction, which takes the element

type as an argument and the length as an operand. This simply translates to

creating an array PMC and assigning the length to it. To prevent boxing and

unboxing, arrays that store integer or floating point types are special-cased, so a

FixedIntegerArray or FixedFloatArray PMC is instantiated. All other types

get stored in a FixedPMCArray PMC.

3.6.3 Loads And Stores

Array loads and stores can be translated trivially to the PIR keyed syntax.

$I1 = $P1[$I0] # load

$P1[$I0] = $I1 # store

Here, $P1 is the array PMC, $I0 is the array index and $I1 is the the register

to load a value from the array into or contains the value to store.

3.6.4 Getting Array Length

The only remaining array instruction is ldlen, which loads the element count of

the array onto the stack. This maps to the elements v-table call in Parrot.

$I0 = elements $P0

Where $P0 holds the array PMC and $I0 will hold the number of elements.

3.7. MANAGED POINTERS 37

3.7 Managed Pointers

A managed pointer holds the address of a local variable or parameter on the

stack, a field from an object or an element in an array. These can be used with

a number of instructions that load and store data indirectly through pointer.

Translating managed pointers needed careful consideration of VM safety is-

sues and required me to make a couple of additions to Parrot itself as well as

implementing a managed pointer PMC and some dynamic ops. There is not

space for the full details here; they may be found in Appendix E.

3.8 Exceptions

3.8.1 Contrasting .Net And Parrot

The .Net exception system uses objects to represent exceptions and a per-method

extent list of protected regions with associated handlers. These protected re-

gions map to the high level language concept of a try block; if an exception is

thrown from within a protected region then handlers containing that region will

be searched, innermost first, to find one that can handle the exception. If there is

no handler in the current method then the runtime will walk down the call stack

searching the handlers of callers. .Net provides four different types of handlers,

but only the two that are commonly used have been translated. One of these

is the typed handler, which is invoked if an exception is thrown that is of that

type. The second is the finally handler, which is run whether or not the protected

region was left due to an exception.

The Parrot exception system is based around an exception stack. Handlers

are created at runtime using the push_eh instruction, specifying a label located

at the start of the handler. The last exception handler that was placed on the

stack can be popped off using the clear_eh instruction. It is also possible to

place a mark on the stack and later pop all handlers that are located above that

mark together with the mark itself. When searching for an exception handler, the

exception stack is checked and the top exception handler is popped off and run.

If it does not wish to handle the exception, it can use the rethrow instruction

to continue the unwinding of the exception stack. Exceptions themselves are

instances of an Exception PMC that provides a keyed interface to store data

relating to the exception.

38 CHAPTER 3. IMPLEMENTATION

3.8.2 From Protected Regions To Pushes, Pops And

Marks

Before translating each instruction, the translator searches the protected regions

table for any regions that start at the current instruction. The handlers table

is in most to least nested order and therefore must be searched in reverse, since

if many regions start at the same location the handler for the outermost region

must be pushed first and the innermost last.

For each region that starts at the current instruction, two PIR instructions

are emitted: a push_eh instruction to put the handler on the stack followed by a

pushmark instruction that places a mark on the stack matching the row number

in the .Net handlers table.

Branches out of a protected region are forbidden; instead the leave instruc-

tion must be used. This translates in the same way as an unconditional branch

but is preceded by code to clear exception handlers from the stack and to run

any appropriate finally blocks.

A popmark instruction will be inserted to clear handlers as needed. The mark

is computed by scanning through the exception handlers table and locating the

first protected region that occupies the location being branched to. Immediately

following the popmark, a pushmark will be generated for the same mark; the

intention of the popmark is to clear all handlers on the stack that belong to nested

protected regions, but the mark that also gets removed is that of the region that

will be branched into. If there are a sequence of protected regions within the

same enclosing region, failure to restore the mark would cause problems beyond

the first in the sequence.

Note that if there is no containing region, the mark 0 should be used. For

this to work, a pushmark 0 is emitted at the top of every translated method and

a popmark 0 at every return.

Figure 3.1 depicts this translation process.

3.8.3 Typed Handlers

PIR is emitted to get the exception object that was thrown and assign the .Net

exception object it contains to what the translated program would consider the

first stack location (since the stack is considered empty on entry to the handler).

PIR will then be emitted that tests if the .Net exception object is of the required

type. If it is not then the exception will be re-thrown; otherwise. The translation

of the handler code follows.

3.8. EXCEPTIONS 39

Figure 3.1: Translation of try and catch blocks

3.8.4 Finally Handlers

There are two ways to enter a finally handler. One is while un-winding the

exception stack because an exception was thrown. Another is when the leave

instruction is used.

The case where the finally handler is walked over is relatively simple to handle.

The handler will be invoked as it is walked over and the exception object will

be retrieved and stored. At the endfinally instruction (used to mark the end

of a finally handler) the exception will be re-thrown. This is not completely

trivial, since if finally handlers are nested the outermost one must remember

which exception to rethrow. Therefore, an array of exceptions waiting to be

thrown from finally handlers must be maintained (at runtime of the translated

code, not in the translator).

The array of exceptions waiting to be thrown has a second purpose: a null

entry can be used to signify that the finally block was entered from a leave

instruction. In this case, the endfinally instruction should instead use the

Parrot ret instruction, which returns from a subroutine branch made within the

40 CHAPTER 3. IMPLEMENTATION

current method. These subroutine branches are emitted when translating leave

instructions and simply jump to the starts of the required finally blocks (that

is, those not walked over while unwinding the stack). Determining which finally

handlers to invoke involves looking at the exception handlers table and locating

ones that would not have been walked over and are on the path from the current

location to the destination of the leave instruction.

3.9 Value Types

Value types in .Net are simply types that exhibit value semantics (for example,

they are copied when passed as a parameter or placed on the stack from a local).

They are like C structures on steroids; they can have both instance and static

fields and methods and may exist in both an unboxed form where they have value

semantics and a boxed form where they become an object.

While Parrot provides all the primitives upon which complex value types can

be built, it does not provide the level of support or optimization that .Net does.

3.9.1 Value Types Become Classes With A Property

Value semantics aside, value types are very much like objects in that they have

fields and methods. Therefore, they translate to Parrot classes and objects in

the same way an ordinary class would. There needs to be a way to differentiate

between the boxed and unboxed forms, even though in the Parrot translation

they are essentially the same thing at a data structure level. Therefore, a PMC

property is used to mark an object as boxed. This is optimized for the common

case (the unboxed form).

3.9.2 Initialization

Unlike objects, there is no requirement to explicitly instantiate or initialize value

types. Therefore, registers holding value type locals need to be initialized at the

start of a method.

3.9.3 Copy On Load

When a value type is loaded (from another register, from a field, from an array

element and so on), an instruction to clone it must be emitted directly afterwards.

Since these instructions are in the “load” instruction class, the translator build

can inset the clone instructions automatically. This interacts badly with the

3.10. MORE ADVANCED SRM MODULES 41

${LOADREG} optimization since there is no way to indicate to the SRM that it

should emit a clone instruction later. Therefore, the pre_load and post_load

proceed as normal, then afterwards pre_op and post_op are used to sandwich

a clone. This may seem hackful, but it avoids the SRM having to know about

value types. A good SRM module can produce code as compact as such cloning

code could be anyway.

3.9.4 Box and Unbox Instructions

Both of these instructions need special cases for built-in raw types. For other

value types, a more general mechanism is required. Boxing requires that the

attributes are copied when the boxing takes place. This is be done with the Parrot

clone instruction, then the “boxed” property is set. Unboxing does not require

any copying of the attributes; the operation simply needs to unset the boxed

property and update the stack type state. However, the .Net unbox instruction

has an additional subtlety - it does not place the unboxed value itself onto the

stack but a managed pointer to it. This is not really a problem, just some extra

instructions to emit.

3.10 More Advanced SRM Modules

The SRM presented earlier in the chapter produces working PIR. Here the focus

is turned to producing good PIR.

3.10.1 Mapping The Stack Onto Registers

An early paper[1] on translating Java bytecode to native code suggested that, in

cases where the stack depth could be statically determined, each stack location

could be mapped to a register (figure 3.2). Pushes and pops then became move

instructions and a stack is no longer required. The condition that the stack depth

can always be determined statically holds in .Net CLI code.

This approach means that each stack instruction becomes one register instruc-

tion, provided there is a single register instruction with equivalent semantics to

the stack instruction. The array used to fake out a stack is no longer needed. The

extra complication is that the SRM must track the stack height (which is trivial

since the type state tracker is also doing this) and ensure that this is propagated

between basic blocks properly.

42 CHAPTER 3. IMPLEMENTATION

Figure 3.2: Mapping the stack onto registers

3.10.2 Adding The Lazy Moves Optimization

Consider adding two integers stored in local variables. The previous SRM scheme

would generate two move instructions followed by the add instruction. This

is inefficient since the add instruction could take the values directly from the

registers holding the local variables. This SRM tries to avoid generating such

instructions by placing loads from registers onto a list of “lazy moves”. Then,

when the add instruction is reached the two registers on the lazy moves list are

used.

There are a lot of ways to make a mess of this; for example, around branches

or branch destinations any moves that have been done lazily must be performed.

However, it is a reasonably cheap optimization to implement.

Chapter 4

Evaluation

It passed all the regression tests,

Such beautiful code it made!

Some libraries were thrown at it,

And class upon class it slayed.

4.1 Evaluating The Translator

4.1.1 Constructs And Instructions Translated

The translator that I implemented was able to translate all of the constructs and

relevant instructions described in the project aims. These were:

• Arithmetic and logical operations

• Branching and comparison

• Classes and objects

• Fields and methods (both instance and static)

• Constructors, class initializers and finalizers

• Method calling, including method overriding and overloading

• Exceptions

• Type casting and coercion

• Managed references

• Arrays

43

44 CHAPTER 4. EVALUATION

In addition, a number of extra instructions and constructs were translated.

These were:

• Value types

• Enumerations

• Loading of required libraries

• Runtime-provided methods (infrastructure for providing methods that the

.Net core library marks as implemented by the VM)

Each item presented in these lists have corresponding regression tests that

pass under all implemented stack to register mapping modules. Examples of

such tests are presented in appendices A and B.

Out of a total of 213 .Net instructions, 197 have translation rules and can

be translated to PIR. However, 15 of these rules are marked as questionable,

meaning that they may not always produce PIR that is semantically equivalent

to the .Net instruction (often because a dubious assumption has been made to

simplify implementation).

4.1.2 Translating The .Net Class Library

Regression tests are good for ensuring that individual constructs can be translated

and verifying that the translator has met the aims of the project. However, they

are less helpful for assessing whether the translator is capable of translating real

world libraries. Therefore, I supplied 40 .Net DLLs from the Mono Project’s

implementation of the .Net Foundation Class Library to the translator. These

ranged in file size from 8 KB to 1.85 MB and contained between 3 and 1354

classes.

Table 4.1 presents the number of classes from each file in the class library

that were translated. In all cases, the PIR that was generated by the translator

was successfully compiled to Parrot bytecode, ensuring that valid code was being

generated. Overall, 4547 out of 5881 classes were translated (approximately 77%).

The dependencies that a class has are not accounted for in these results; if a

class was translated successfully but a class that it inherits from or uses was not,

then it has been counted as having been translated successfully. However, all

methods of a class must have been translated for a class to count as having been

translated successfully. Table 4.2 presents an analysis of the translation failures.

4.1. EVALUATING THE TRANSLATOR 45

Table 4.1: Results of translating .Net Foundation Class Libraries
Name Translated Total Percentage

mscorlib.dll 1054 1354 77%

System.dll 508 650 78%

Accessibility.dll 3 3 100%

I18N.CJK.dll 37 38 97%

I18N.MidEast.dll 16 23 69%

I18N.Other.dll 39 47 82%

I18N.Rare.dll 76 113 67%

I18N.West.dll 32 47 68%

I18N.dll 4 5 80%

ICSharpCode.SharpZipLib.dll 48 63 76%

Microsoft.JScript.dll 201 269 74%

Microsoft.VisualBasic.dll 35 84 41%

Microsoft.VisualC.dll 12 12 100%

Microsoft.Vsa.dll 14 15 93%

Mono.CompilerServices.SymbolWriter.dll 23 29 79%

Mono.Data.SqliteClient.dll 10 15 66%

Mono.Data.SybaseClient.dll 31 42 73%

Mono.Data.Tds.dll 33 41 80%

Mono.Data.TdsClient.dll 28 37 75%

Mono.Data.dll 7 7 100%

Mono.GetOptions.dll 19 26 73%

Mono.Http.dll 8 13 61%

Mono.Posix.dll 138 178 77%

Mono.Security.Win32.dll 12 13 92%

Mono.Security.dll 169 218 77%

System.Data.dll 248 338 73%

System.Design.dll 104 112 92%

System.DirectoryServices.dll 22 25 88%

System.Drawing.Design.dll 11 14 78%

System.Drawing.dll 168 238 70%

System.EnterpriseServices.dll 112 114 98%

System.Management.dll 48 52 92%

System.Messaging.dll 47 54 87%

System.Runtime.Remoting.dll 57 70 81%

System.Runtime.Serialization.Formatters.Soap.dll 8 12 66%

System.Security.dll 34 42 80%

System.ServiceProcess.dll 17 21 80%

System.Web.Services.dll 177 211 83%

System.Web.dll 377 549 68%

System.Xml.dll 560 687 81%

Summary 4547 5881 77%

46 CHAPTER 4. EVALUATION

Reason Count Percentage

Unimplemented instruction 710 53%

Unimplemented built-in method 260 20%

Unimplemented construct 193 14%

Translator fault 171 13%

Table 4.2: Reasons for translation failures

4.2 Comparing SRM Modules

As described in the previous chapter, three stack to register mapping modules

were implemented.

• Stack, which used an array to emulate the .Net stack

• Register, which mapped each stack location to a register

• OptRegister, which attempts to not generate some of the move instructions

that Register does

This section compares these three SRM modules from various angles.

4.2.1 Generated Code Quality

A very compact example clearly demonstrates the differences between the code

generated by the various stack to register mapping modules. Consider the fol-

lowing method, implemented in C#.

public int add(int x, int y)

{

return x + y;

}

Compiling this code and then disassembling the resultant .Net module shows

the following .Net Intermediate Language code.

.method public hidebysig

instance default int32 ’add’ (int32 x, int32 y) cil managed

{

// Method begins at RVA 0x20f4

// Code size 4 (0x4)

.maxstack 8

4.2. COMPARING SRM MODULES 47

IL_0000: ldarg.1

IL_0001: ldarg.2

IL_0002: add

IL_0003: ret

} // end of method Test::instance default int32 ’add’ (int32 x, int32 y)

The following code was produced by the Stack SRM module. Notice that it

uses a ResizablePMCArray to emulate the stack, meaning that a PMC must be

created at every entry to the method and also every time an integer or floating

point number is pushed onto or popped from the stack. In the worst case (the

add instruction), a single .Net instruction becomes four Parrot instructions. This

may be code that runs on a register machine, but it is hardly register machine

code.

.sub "add" :method :multi("Testing.Test", int, int)

.param int arg1

.param int arg2

.local pmc arg0

arg0 = self

.local pmc s

s = new ResizablePMCArray

pushmark 0

LAB0: push s, arg1

LAB1: push s, arg2

LAB2: $I0 = pop s

$I1 = pop s

$I2 = $I0 + $I1

push s, $I2

LAB3: $I0 = pop s

popmark 0

.return($I0)

.end

The Register SRM module (generated code below) addresses these shortcom-

ings. Since it only uses registers, the problem of instantiating a lot of PMCs has

disappeared. Also, there is now just one Parrot instruction per .Net instruction.

.sub "add" :method :multi("Testing.Test", int, int)

.param int arg1

.param int arg2

48 CHAPTER 4. EVALUATION

.local pmc arg0

arg0 = self

pushmark 0

LAB0: $I0 = arg1

LAB1: $I1 = arg2

LAB2: $I0 = $I1 + $I0

LAB3: popmark 0

.return($I0)

.end

While the Register SRM is a vast improvement, it produces a number of

redundant move instructions. OptRegister attempts to remove some of these,

and in cases such as the above one produces a notable improvement, shown

below. Here, three .Net instructions have become a single instruction.

.sub "add" :method :multi("Testing.Test", int, int)

.param int arg1

.param int arg2

.local pmc arg0

arg0 = self

pushmark 0

LAB0:

LAB1:

LAB2: $I0 = arg2 + arg1

LAB3: popmark 0

.return($I0)

.end

While a good optimizer would be able to perform copy prorogation to elimi-

nate the redundant moves, picking out some of the easy cases at translation time

can only help the optimizer by providing it with a smaller problem.

4.2.2 Generated Code Performance

To compare the performance of the code generated by different SRM modules, I

took an implementation of the Mandelbrot program in C# from The Computer

Languages Shootout1 and modified it to create a library with a single method

that summed all the values that would be used to produce a visual Mandelbrot

1http://shootout.alioth.debian.org/

4.2. COMPARING SRM MODULES 49

SRM t1 t2 t3 t4 t5 taverage

Stack 315.4 316.1 316.6 316.4 315.2 315.9

Register 21.30 21.25 21.31 21.28 21.28 21.28

OptRegister 12.02 12.03 12.00 12.02 12.02 12.02

Table 4.3: Mandelbrot performance by SRM

SRM t1 t2 t3 t4 t5 taverage

Stack 267.5 267.4 267.1 267.3 267.1 267.3

Register 228.9 229.4 229.9 228.8 228.6 229.1

OptRegister 220.0 220.0 219.9 219.8 220.0 219.9

Table 4.4: Translation time by SRM

output, computing a kind of checksum. The modified C# source code can be

found in Appendix C.

This benchmark does intensive numerical computation, which means that the

“stack” is used heavily. This emphasises the differences between SRM modules,

and it would be fair to claim that it over-emphasizes them and that real world

programs tend not to be doing such intensive numerical computation. The bench-

mark was translated under each of the SRM modules and run five times. The du-

rations of these five runs were measured using a Perl script and the Time::HiRes

module. The results are contained in table 4.3.

The performance of the code generated by the Stack SRM is significantly

worse than the SRM modules that completely remove the need for a stack. This

is because every push and pop on the array emulating the stack causes a v-table

call and because every push or pop is causing a box or unbox operation to be

performed. This boxing and unboxing creates a great number of very short-lived

PMCs that must be garbage collected, causing high GC overhead.

The difference made by the OptRegister SRM over the Register SRM is quite

notable and shows that not generating redundant moves is a big win in a bench-

mark like this (in fact, a much bigger win that I was expecting).

4.2.3 Translation Time

To compare the translation times, I wrote a script that timed translating the .Net

class library five times under each SRM. The translation time was the time to

generate the PIR and compile it to Parrot bytecode. The results are in table 4.4.

These results are surprising at first glance, since the more elaborate the SRM

scheme the quicker the translation is performed. The reasoning behind this is

50 CHAPTER 4. EVALUATION

VM t1 t2 t3 t4 t5 taverage

Mono 2.172 2.140 2.141 2.125 2.156 2.147

Parrot 12.02 12.03 12.00 12.02 12.02 12.02

Table 4.5: Mandelbrot performance by VM

that the more elaborate SRM schemes produce less code, meaning that the PIR

compiler has less code to compile and a smaller register allocation problem to

solve. The PIR to PBC compilation phase is far more significant in determining

the total translation time than the .Net to PIR step, so reducing the amount of

time the second step takes by doing more work earlier on leads to shorter overall

translation times.

These times fall well within the performance criteria laid out in the prepa-

ration, where it was stated that a translation time of around 2 minutes was

acceptable for translating a file such as the 1.85 MB mscorlib.dll; even using the

Stack SRM this only takes just over one minute.

4.3 Comparing Performance With A .Net VM

The Mandelbrot benchmark used to compare SRM modules produces the timings

in table 4.5 when run under the Mono implementation of .Net. The best Parrot

result is also repeated for easy comparison.

Mono is very clearly faster by a factor of around six, but considering that

an optimized build of Mono with a working JIT compiler was compared to an

unoptimized non-JITing Parrot (due to a bug in the Parrot JIT compiler), the

performance of the translation is quite acceptable.

Again, this program does not present a typical workload and a great deal of

further benchmarking would be needed to give a better indication of how well

the translated code measures up to the original code running on a .Net VM.

4.4 Software Engineering Evaluation

An evaluation of the project from a software engineering perspective can be found

in appendix D.

Chapter 5

Conclusion

Love virtual machines does he,

Shared libraries make his day.

And libraries for VM B,

Now work on VM A.

5.1 Bytecode Translation Works

The project met all of the requirements laid out in the project proposal and

can be considered a resounding success, verifying the claim in the introduction

that bytecode translation is a good solution to virtual machine interoperability

problems.

In addition to being able to translate all of the planned constructs and in-

structions, some of which require non-trivial transformations, I have been able to

implement a number of extensions and given the translator a more “real world”

test by attempting to translate the .Net class library. For the amount of time

that has been put in to the project, being able to translate over 90% of the .Net

instruction set and three quarters of the classes in the class library indicates that

the translator could be made suitable for production use in a reasonable time

frame.

The regression testing suite demonstrates that the code that is being pro-

duced is semantically equivalent to the input .Net programs, providing evidence

for the correctness of the translator. Furthermore, under the best stack to reg-

ister mapping algorithm that I developed, good quality register machine code is

produced.

51

52 CHAPTER 5. CONCLUSION

5.2 Code Less, But Smarter

During the design phase of the project I did wonder whether creating a declarative

mini-language would turn out to be overkill. My conclusion is that this project

would have been far less successful had I hand-coded a translator. Taking what

seemed like quite a long time early on to produce a development tool paid off

very well further down the road, delivering a greatly more manageable and smaller

code base.

To quantify this, the generated instruction translator is a file of over 22,000

lines of PIR when using the optimising stack to register mapper. By comparison,

the file of translation rules is just over 3,000 lines and highly maintainable, an

SRM module is only a few hundred lines and the build tool comes to under

1,400 lines of code including a large chunk of PIR that implements translation of

exception handlers.

5.3 Future Directions

The source code, documentation and regression tests that have been produced

in this project are going to be contributed to the Parrot community. I intend to

continue development of the translator, and others will be more than welcome to

join the fun. I have also submitted a proposal for a talk about the translator at

the European Perl Conference 2006.

While over 90% of .Net instructions and 77% of the class library can now be

translated, I think that reaching the point where the translator is ready for pro-

duction use will take about as much work as it took to get this far. The approach

to perfection - where the translator always produces semantically equivalent code

- is probably asymptotic, and this ignores the fact that both .Net and Parrot are

moving targets. The latest version of the .Net CLR supports parametric poly-

morphism, which will likely take significant work to translate. Another direction

might be to take the translation framework and modify it to translate JVM byte-

code, since a lot of the problems that would need to be solved are the same.

Whatever the future holds, I look forward to continuing to play with virtual

machines and, so long as there is a need for it, bytecode translation. Interest

in VMs continues to increase, and I hope this work will be a contribution to

understanding just one of the many challenges that the field presents.

Bibliography

[1] John C. Gyllenhaal Cheng-Hsueh A. Hsieh and Wen mei W. Hwu. Java

bytecode to native code translation: The caffeine prototype and preliminary

results. In 29th Annual Internation Symposium on Microarchitecture, 1996.

[2] Cristina Cifuentes and Mike Van Emmerick. Uqbt: Adaptable binary trans-

lation at low cost.

[3] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron. The case for virtual

register machines, 2002.

[4] EMCA International. EMCA 335 CLI Specification - Virtual Machine.

[5] Jonathan Worthington. Parrot: VM design gone crackers? Cambridge Pro-

gramming Research Group, 2006.

[6] Jonathan Worthington. Parrot: What, where and why? London Perl Work-

shop, 2005.

[7] Mono Project. Embedding Mono.

53

54 BIBLIOGRAPHY

Appendix A

Sample Regression Testing Script

This appendix contains the source code for the regression test script t/math.t.

#!perl -w

use Test::More;

use DotNetTesting;

use strict;

use Test::More tests => 7;

Testing class for this file.

die unless compile_cs("t.dll", <<’CSHARP’);

namespace Testing

{

public class Test

{

public int add(int x, int y)

{

return x + y;

}

public int sub(int x, int y)

{

return x - y;

}

public int mul(int x, int y)

55

56 APPENDIX A. SAMPLE REGRESSION TESTING SCRIPT

{

return x * y;

}

public int div(int x, int y)

{

return x / y;

}

public int rem(int x, int y)

{

return x % y;

}

public int neg(int x)

{

return -x;

}

}

}

CSHARP

Attempt to translate.

ok(translate("t.dll", "t.pbc"), ’translate’);

Tests.

is (run_pir(<<’PIR’), <<’OUTPUT’, ’add’);

.sub main

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj.add(500,72)

print $I0

print "\n"

$I0 = obj.add(500,-72)

print $I0

print "\n"

.end

PIR

57

572

428

OUTPUT

is (run_pir(<<’PIR’), <<’OUTPUT’, ’sub’);

.sub main

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj."sub"(500,72)

print $I0

print "\n"

$I0 = obj."sub"(500,-72)

print $I0

print "\n"

.end

PIR

428

572

OUTPUT

is (run_pir(<<’PIR’), <<’OUTPUT’, ’mul’);

.sub main

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj.mul(50,7)

print $I0

print "\n"

$I0 = obj.mul(-7,-6)

print $I0

print "\n"

.end

PIR

350

42

OUTPUT

is (run_pir(<<’PIR’), <<’OUTPUT’, ’div’);

58 APPENDIX A. SAMPLE REGRESSION TESTING SCRIPT

.sub main

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj.div(12,3)

print $I0

print "\n"

$I0 = obj.div(15,14)

print $I0

print "\n"

$I0 = obj.div(-121,11)

print $I0

print "\n"

.end

PIR

4

1

-11

OUTPUT

is (run_pir(<<’PIR’), <<’OUTPUT’, ’rem’);

.sub main

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj.rem(13,3)

print $I0

print "\n"

$I0 = obj.rem(-15,13)

print $I0

print "\n"

.end

PIR

1

-2

OUTPUT

is (run_pir(<<’PIR’), <<’OUTPUT’, ’neg’);

.sub main

59

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj.neg(100)

print $I0

print "\n"

$I0 = obj.neg(-15)

print $I0

print "\n"

.end

PIR

-100

15

OUTPUT

60 APPENDIX A. SAMPLE REGRESSION TESTING SCRIPT

Appendix B

Recursive Calling Regression

Test

This appendix contains the source code for the regression test script

t/recursion.t.

#!perl -w

use Test::More;

use DotNetTesting;

use strict;

use Test::More tests => 2;

Testing class for this file.

die unless compile_cs("t.dll", <<’CSHARP’);

namespace Testing

{

public class Test

{

public int factorial(int x)

{

if (x <= 1)

return 1;

else

return x * factorial(x - 1);

}

}

61

62 APPENDIX B. RECURSIVE CALLING REGRESSION TEST

}

CSHARP

Attempt to translate.

ok(translate("t.dll", "t.pbc"), ’translate’);

Tests.

is (run_pir(<<’PIR’), <<’OUTPUT’, ’factorial’);

.sub main

.local pmc obj

load_bytecode "t.pbc"

obj = new "Testing.Test"

$I0 = obj.factorial(0)

print $I0

print "\n"

$I0 = obj.factorial(1)

print $I0

print "\n"

$I0 = obj.factorial(2)

print $I0

print "\n"

$I0 = obj.factorial(10)

print $I0

print "\n"

.end

PIR

1

1

2

3628800

OUTPUT

Appendix C

SRM Comparison Benchmark

This is the C# class that was compiled down to .Net bytecode and translated

using each SRM module to compare their performance. It was based upon code

from The Computer Languages Shootout1.

namespace Benchmark {

public class Mandelbrot {

public int MandelChecksum(int width) {

int checkSum = 0;

int height = width, i, m = 50, bits = 0, bitnum = 0;

bool isOverLimit = false;

double Zr = 0.0, Zi = 0.0, Cr, Ci, Tr, Ti, limit2 = 4.0;

for(int y = 0; y < height; y++) {

for(int x = 0; x < width; x++){

Zr = 0.0; Zi = 0.0;

Cr = 2.0*x / width - 1.5;

Ci = 2.0*y / height - 1.0;

i = 0;

do {

Tr = Zr*Zr - Zi*Zi + Cr;

Ti = 2.0*Zr*Zi + Ci;

Zr = Tr; Zi = Ti;

isOverLimit = Zr*Zr + Zi*Zi > limit2;

} while (!isOverLimit && (++i < m));

1http://shootout.alioth.debian.org/

63

64 APPENDIX C. SRM COMPARISON BENCHMARK

bits = bits << 1;

if (!isOverLimit) bits++;

bitnum++;

if (x == width - 1) {

bits = bits << (8 - bitnum);

bitnum = 8;

}

if (bitnum == 8){

checkSum += (byte)bits;

bits = 0; bitnum = 0;

}

}

}

return checkSum;

}

}

}

Appendix D

Software Engineering

D.1 Planning Good Software Engineering

I think the hardest thing with regards to good software engineering in an indi-

vidual project can be making yourself actually do the things that deep down you

know make sense in the long run, but are not particularly interesting to do at

the time.

D.1.1 Write The Documentation

The end result of this project was to be a fairly large system that would be able

to translate somewhere between 150 and 200 .Net instructions as well as a range

of other constructs described in the metadata. That is more than I was likely to

be able to keep in my head at once, and therefore ensuring I documented how

things worked as I implemented them was essential for me as well as anyone who

works on the translator in the future. Of course, the higher level design needed

to be documented up front too.

Parrot is documented using Perl’s POD (Plain Old Documentation) format

- a very lightweight documentation format that can be transformed into a wide

range of other formats including plain text, HTML and Latex. I chose to use this

for the translator because it was familiar (to me and to any future developers

who have worked on Parrot), took next to no effort to work with and was easy

to transform to Latex if I wanted to include it in the final write-up.

D.1.2 Regression Testing

Automated regression testing is particularly appropriate for projects such as this

one. A number of input .Net libraries can be provided to the translator and

65

66 APPENDIX D. SOFTWARE ENGINEERING

translated into Parrot libraries. For each translated library a number of tests can

then be written to ensure that the results produced by the translated library are

as expected. Since this is an automated process it becomes simple to run the

tests on a regular basis to check new changes have not broken things that worked

previously.

I chose to use a Perl testing framework, including the modules Test::More

and Test::Harness, to build my regression test suite. They make writing tests a

quick job by factoring out all of the testing related machinery so you just have the

code and the expected output in the test script. They also provide provide result

collation, producing a summary of any failing tests, and are the same modules

used for testing Parrot and many other Parrot compilers. See Appendix A for a

sample test script.

Just as documentation was to be an on-going process, testing was to take

place throughout the implementation rather than as a separate stage at the end.

Essentially, I planned to follow the Test Driven Development paradigm.

D.1.3 Backups

Since it’s all to easy to forget to make backups, I automated the process. This

was achieved by a simple Perl script scheduled to run once a day. It zipped up

the repository (that is, the source code along with all of the version information),

named the ZIP file using the current date and then FTP’d it to the Pelican

server, operated by the Cambridge University Computing Service. This meant

that I could look back as far as needed rather than just having the previous day’s

backup to look at.

D.1.4 Version Control

Even when there is just a single developer working on a code base, version control

can be of great value. I used Subversion1 from the start of the project, keeping

all code and documentation under version control. If you’re not familiar with

Subversion, it is basically CVS but done right; there is a global version number

rather than a per-file version number, so you can easily revert a particular set of

related changes that spanned multiple files. Additionally, provided you write good

commit messages and check in regularly, the version control system essentially

keeps a project log for you.

1http://subversion.tigris.org/

D.2. EVALUATING SOFTWARE ENGINEERING 67

D.1.5 Tools

I chose to use a makefile to manage the build process. They are portable and, if

written correctly, mean that you only re-build the things that need to be re-built

after a change. The entire build process at the end of my project took close to

a minute on my development machine; just re-building what was needed on the

other hand often only took a few seconds.

I used Microsoft’s Visual Studio IDE heavily while coding. I chose this over

other Integrated Development Environments or just a simple programmer’s text

editor mostly because of its C debugger. This would not only be useful when

debugging the parts of my own project that were written in C, but also for those

occasions when I needed to dig into the Parrot core itself.

D.2 Evaluating Software Engineering

D.2.1 Implementation

Separating out the concerns of instruction translation, stack to register mapping

and type state tracking led to a highly maintainable code base. Pulling these

together with a translator generation script led to a high performance translator,

which coupled with a meta-data translator implemented in C gave overall good

performance. Writing the C was painless; the most common mistake was forget-

ting to inform the garbage collector of live PMCs, but this was easily detected

and fixed. The parts of the metadata translator that were implemented in PIR

were quite tedious to produce, but thankfully this did not amount to a great deal

of code. The choice of Perl for the translator generator worked out well.

Declarative instruction translation provided all the benefits that I had hoped

for. I sometimes wished for a slightly more powerful language, especially for cases

where an “instruction” statement was only just not powerful enough and I had

to drop to supplying a PIR implementation of the code to emit the translation.

Branch instructions are one example of this.

The SRM interface as designed right at the start of the project proved to

be sufficient for all of the SRMs that I had planned to implement. There is

scope for further improvements to the optimising SRM that there was not time

to implement, and they too will fit within the current framework.

Overall, the implementation phase went as well as I had hoped and there was

time to dig into some extension tasks too.

68 APPENDIX D. SOFTWARE ENGINEERING

D.2.2 Documentation

I actually wrote the documentation as I went along. As predicted, I did find myself

referring back to it over time as I forgot how things worked or were supposed to

work. Trying to put an idea into words before putting it into code also provided

another chance to think it through, so the documentation process often helped

clear up any minor issues with the design.

By the end of the project I had over 11,000 words of documentation, which

would have come in handy had I forgotten to write a dissertation. However, it

would also have made a really boring read.

D.2.3 Regression Testing

I aimed to take a Test Driven Development style approach to this project from

the start. I followed this well - the first time the vast majority of new code was

tested, it was through a test in the regression testing suite.

Regression testing did catch a number of bugs introduced by adding a new

feature that somehow broke existing code, and without the test suite they may

have slipped through the net and not have been noticed until some time later.

Seeing what tests fail and how they fail can also provide valuable insight into

where the problem might lie. Having a good test suite was also extremely valuable

when implementing new SRM modules.

Forcing myself to be disciplined about writing tests from the start was one of

the best software engineering decisions I made in this project. To my surprise I

found that a couple of months into the implementation, as I started to see the

benefits that having the test suite was bringing, writing the tests stopped feeling

like a chore and instead just became a natural part of the development process.

Appendix E

Managed Pointers

A managed pointer holds the address of a local variable or parameter on the

stack, a field from an object or an element in an array. These can be used with a

number of instructions that load and store data indirectly through pointer. The

“managed” part means that limitations are placed upon the pointer. Namely, in

verifiable code the location the pointer references can only be set by a limited

number of instructions and can not be modified by user code. This means that

the pointer will always point to a valid location so the safety of the VM can not

be compromised.

E.1 Considering Possible Parrot Safety Prob-

lems

Parrot does not directly support and lacked a straightforward way to implement

managed pointers. One issue is that there is no official and documented way

to obtain references to, or the addresses of, registers, fields of objects or array

elements. Another is that post-translation, there is nothing to distinguish a

register holding a reference, so verification as used in .NET does not help with

regard to protecting the Parrot VM at runtime. Further complications arise with

regard to references to arrays and objects, as even if undocumented knowledge

of internals is used, the data a PMC holds may move at runtime, meaning the

pointer may be silently invalidated at some point. Registers are somewhat easier

to get the address of but also present a security issue - if the managed pointer

exists beyond lifetime of the register frame, that memory location can be modified

at a later time.

69

70 APPENDIX E. MANAGED POINTERS

E.2 A Managed Pointer PMC

I decided the best way forward was to implement a custom PMC to represent

a managed pointer. Beneath the PMC is a structure containing details of the

pointer (conceptually, the location it points to). However, no PMC methods ex-

ist that allow this location to be modified from the outside. Instead, managed

pointers can only be created through a number of special instructions, imple-

mented as dynamic ops. This has the same net result as a .Net VM that verifies

code to ensure that the pointer’s address is not modified.

E.3 Managed Pointers To Array Elements

As the index of the array element being referenced is known at the time the

pointer created, the pointer can be emulated by storing the index and a pointer

to the array PMC. The array PMC’s v-table methods are then used to get and

set the value, meaning that PMC encapsulation is not broken and pointers into

other language’s array PMCs will work. The array PMC needs to be marked live

when the garbage collector visits the managed pointer PMC.

E.4 Managed pointers to fields

Similar to the array case, the name of the field along with a pointer to the object

PMC can be stored and used to implement indirect access to the field through

the “getattribute” and “setattribute” v-table methods. Again, the object PMC

needs to be marked live for GC purposes.

E.5 Managed pointers to registers

This covers managed pointers to local variables and parameters, which in trans-

lated programs are both stored in registers. A dynamic op can be implemented

for each register type that creates a managed pointer PMC that points to the cur-

rent register frame and contains the type of the register and the register number.

These can then be used to modify the register indirectly. However, this leaves a

big security problem, since the managed pointer may continue to exist beyond

the register frame.

To solve this problem, and after discussion with other Parrot developers, I

patched Parrot to have a lightweight callback mechanism such that a function

can register itself to be called when a particular register frame ceases to exist.

E.5. MANAGED POINTERS TO REGISTERS 71

This in turn causes the managed pointer PMC to invalidate the pointer to the

register frame, and attempting to use the managed pointer PMC from that point

onwards would throw an exception.

A further problem is that the local variables, when placed in registers, became

eligible for register allocation and therefore two local variables may be allocated

the same register when their live ranges do not overlap. This is a problem if

a managed pointer is taken to a register, since when the pointer is followed the

register may not contain the local variable that it did when the pointer was taken.

To work around this, I modified Parrot to allow a .local declaration to have a

:unique_reg modifier, which forces the register allocator to give it a register of

its own.

72 APPENDIX E. MANAGED POINTERS

Appendix F

Project Proposal

J. R. Worthington

Emmanuel College

jrw64

Computer Science Tripos Part II Project Proposal

Virtual Machine Bytecode Translation:

From The .NET CLI To Parrot

18 October 2005

Project Originator: J. R. Worthington

Project Supervisor: Dr. T. Griffin

Signature:

Director of Studies: Dr. N. Dodgson

Signature:

Overseers: Prof. G. Winskell, Dr P. Lio

73

74 APPENDIX F. PROJECT PROPOSAL

Special Resources Required

The use use of my own personal computer (AMD Athlon(tm) XP 2800+, 1.0

GB RAM, 80 GB HDD, Windows XP, Linux). I will use the Subversion version

control system, which may not be available on the PWF.

75

Introduction

Writing high level language compilers that target a virtual machine rather than a

range of hardware and operating systems is of increasing popularity. Virtual ma-

chines for high level languages usually consist of a software CPU with an instruc-

tion set, a memory management system and an API (Application Programming

Interface) for performing a range of tasks that may include, for example, I/O and

threading. An implementation of the virtual machine maps the instruction set

of the software CPU to instructions understood by the underlying hardware and

the virtual machine’s API to the API provided by the operating system.

Virtual machines make cross-platform deployment much simpler: once the

virtual machine has been ported to a platform, all programs that run on the

virtual machine can run on that platform. Compilers only need one back end.

Furthermore, the virtual machine can make a compiler’s task simpler by providing

support for common high level language constructs such as types, objects and

exceptions. This common representation for such constructs also opens the door

to high level language interoperability; it could be possible to write a class in

language A, inherit and extend it in language B and instantiate the derived class

in language C.

In the last decade computing power has become sufficient to offset the trans-

lation costs and researchers have produced a wide range of techniques for imple-

menting virtual machines efficiently, making widespread use of virtual machines

feasible. Sun Microsystems introduced the Java Virtual Machine (JVM) in 1995,

Microsoft introduced its .NET platform at the start of the millennium and around

same time work started on Parrot, an open source virtual machine project initi-

ated by the Perl community.

Somewhat ironically, the issue of having a range of target platforms that was to

be solved by implementing a virtual machine has come back in a new form: there

are now a range of target virtual machines! This is not too surprising, not only

because a free market works that way but also because there are good technical

grounds for why one virtual machine would not be a good fit all languages. For

example, a virtual machine that only needs to provide for static languages can

make a lot of assumptions and optimizations that a virtual machine that was to

be the target for dynamic languages could not make. Here dynamic languages

refers to languages that may, for example, need their parsers available or allow

new types to be created and existing types to have their structure and behaviour

modified at runtime.

This project aims to investigate a way of achieving interoperability between

virtual machines. Specifically, it will attempt to translate the input that would

76 APPENDIX F. PROJECT PROPOSAL

be expected by one virtual machine into the input expected by another. The

“machine code” that virtual machines execute is usually named bytecode, thus

the project title. The two virtual machines that have been selected for this project

are the .NET CLI and Parrot, with the aim of translating .NET CLI bytecode

to Parrot bytecode.

The .NET Common Language Infrastructure

The .NET CLI was specified and first implemented by Microsoft and is an open

ECMA standard. An open source implementation exists and is named Mono, the

Spanish word for monkey. Mostly suited to static languages, its notable features

include:

• Stack based execution model

• Garbage collection

• A range of built in value types

• Extensive support for OOP constructs including classes, single inheritance,

interfaces and objects

• Built-in support for arrays, exceptions, delegates, type checking, strings,

unicode, operator overloading and tail calls

• PInvoke (Platform Invoke) for dealing with platform specific libraries

• Declarative security model

Parrot

The Parrot project initially started out as the Perl 6 internals project, but shortly

afterwards became a project to build a virtual machine to support a wide range

of languages. The name “Parrot” came from an April fool’s day joke news story

that had Larry Wall and Guido van Rossum agreeing to merge the Perl and

Python languages to produce a language named Parrot. With Perl and Python

as just two of the languages that Parrot is to support, it needs to provide a range

of features used by dynamic programming languages. Notable Parrot features

include:

• Register machine based execution model with 4 register types (Integer,

Number, String and PMC)

77

• PMC types allow for language specific behaviour on a wide range of oper-

ations through a v-table mechanism

• Garbage collection

• OOP support including classes, multiple inheritance with runtime-

changeable inheritance hierarchy and objects

• Built-in support for arrays, exceptions, strings with various types of en-

coding, subroutines, namespaces, closures, co-routines, continuations, tail

calls, lexical variables

• MMD (Multi Method Dispatch) - like method overloading but more dy-

namic, as new methods could appear at any time

• Dynamically loadable PMCs and instructions (the virtual machine’s in-

struction set can be extended at runtime by loading additional instructions;

yes, Parrot really is that insanely cool!)

• Interface for calling back into compilers

• NCI (Native Calling Interface) for dealing with platform specific libraries

Work that has to be done

The project has three tasks that must be completed in order before any others

followed by a wide range of tasks that build upon these that have no significant

dependencies. The first three tasks can be seen as building a framework for the

translator. The remaining tasks then use that framework, improving it in places,

to build a useful translator.

Bytecode and meta-data extraction

The first task is to implement a method of taking a .NET EXE or DLL file and

extracting from it the bytecode and meta-data. The meta-data is used to describe

types (classes), various signatures for locations and methods, protected regions

and their related exception handlers and other details that are not encoded in

the instruction stream. The bytecode is the stream of instructions that define

the implementation of methods.

The plan for this is to write a number of Parrot PMCs that will be used to

represent the file. This will allow full introspection of the .NET meta-data and

78 APPENDIX F. PROJECT PROPOSAL

access to the bytecode from Parrot programs. PMCs are implemented in C. It

may be possible to use code from the Mono project to parse the file, depending

on whether their implementation is in C and is suitable. If not, it does not appear

to be a significant undertaking to implement something from scratch.

Class hierarchy translator

In the .NET CLI the details of classes, their properties and their methods is stored

in meta-data. In Parrot a series of instructions are used to set up classes. To

allow the project to move forward a translator that can take the .NET meta-data

and emit Parrot Intermediate Representation (PIR) code that define a class,

its properties and its methods will be required. Initially, it need not support

inheritance, visibility, interfaces and type checking; these can be added later.

This translator will make use of the PMCs developed as part of the first task

and will also need to use the Parrot Intermediate Representation (PIR) compiler,

which is invokable from PIR. Given these requirements and that it is not a large

body of code, this section of the project can be written in PIR.

Note that PIR is going to be generated instead of Parrot bytecode. This is

because generating Parrot bytecode directly would basically involve duplicating

the Parrot assembler, which would vastly slow progress on the project for a

possible small performance gain at translation time (and no gain at execution

time, which is what really matters; the results of the translation can be cached).

The bytecode translator generator

This third part is the foundation for actually translating the bytecode. The byte-

code translator would roughly look like a massive switch block, but with register

allocation code spliced in everywhere. The best way to write a large, monolithic

chunk of code is not to write it, but rather to generate it. The translator gener-

ator will be written in a high level language. It will take a rules file that maps

.NET instructions to Parrot instructions and a module that knows how to gener-

ate the stack to register mapping PIR and emit a translator in PIR. This means

that the various concerns (instruction mapping and register allocation) are well

separated. The stack to register allocation strategy need not be a great one at

first, nor does the rules file need to contain a mapping for every .NET instruction;

these are to add in the later tasks.

79

Tasks required for a minimal translator

To build a very minimal translator that shows that .NET to Parrot bytecode

translation is possible, though is of little practical use, the following things need

to work on Parrot.

• Set up regression test harness

• Native integer and 32-bit integer types

• Method parameter access instructions and the return instruction

• Basic arithmetic and logical instructions

• A scheme for translation and fix-up of jump and conditional branch instruc-

tions

• Local variable related instructions

Tasks required for a successful translator

For the project to be considered a success, all of the above things need to work

and in addition to those, the following list.

• Method calling (from within .NET code)

• Complete System.Object implementation

• Remaining built-in types

• Boxing and unboxing of types

• Arrays

• Strings

• Static methods

• Overloaded methods

• Object instantiation, initializers, constructors and finalizers

• Class inheritance and interfaces

• Floating point types and instructions

80 APPENDIX F. PROJECT PROPOSAL

• Exceptions

• Type checking

• Visibility modifiers (private, family, assembly, public)

• Better register allocation

• Lots and lots of regression tests (Mono tests can be used)

Extension tasks

If the project finishes ahead of schedule, some features from the following list can

be implemented.

• Delegates (the OOP equivalent to function pointers)

• PInvoke (calling into native libraries); will also need to investigate pin and

unpin instructions

• Reflection

• Runtime infrastructure library

• Variable argument methods

• Nested types

• Declarative security model

• Respect “volatile”

• Operator overloading

• Tail calls and method jumps

• Typed references

• Investigate what remains to be done to make any parts of the .NET class

library that currently can not be translated work - there should not be

much left

81

Difficulties to overcome

The biggest difficulty will be ensuring the translator captures the full semantics

of the .NET CLI. A number of .NET instructions will not map directly to Parrot

ones, or the Parrot instruction it would appear to map to will have some slightly

different semantics that need to be worked around. Also, Parrot is not so strict

about typing as the .NET CLI is, so enforcing a .NET type regime will require a

little effort.

Starting Point

At the time of proposing the project I have a good knowledge of most of the

terminology and concepts used in the virtual machine field, although I have not

greatly considered or researched the implementation of many of them in any

depth. I have carried out a range of development work on Parrot, including

a number of fixes with regard to building and using Parrot on the Windows

platforms and implementing a Parrot bytecode file linker. I am somewhat less

familiar with the .NET platform, but have just finished reading the .NET CLI

ECMA Specification, Partition I. I have a good deal of experience with the Perl

programming language and am familiar with the regression testing tools provided

by Perl. I am familiar with the C programming language.

Work Plan

24th October - 6th November

• Document the project plans in some more detail, work out any subtle de-

pendencies

• Set up subversion, a project wiki, backups, etc.

• Start to develop .NET EXE and DLL reading PMCs

• Start to develop meta-data translator alongside the PMCs, as this will act

as an ideal way to test them

7th November - 20th November

• Complete PMCs and first version of meta-data translator

• Design translation rules engine

82 APPENDIX F. PROJECT PROPOSAL

• Decide on initial register allocation strategy

• Do most of the work to implement the translation rules to PIR translator

engine and connect it to the meta-data translator.

• Write some of the rules for basic arithmetic instructions and the return

instruction

• Get some regression tests running

21st November - 4th December

• Finish first version of the instruction translation engine

• Add more arithmetic and logic instructions

5th December - 18th December

• Generate labels for jumps and add rules for jumps and conditional branch

instructions

• Parameter access and local variables

• Any missing arithmetic and logical instructions

19th December - 8th January

• Christmas and new year’s break

• A chance to catch up if the schedule has slipped

9th January - 22nd January

• Method calling (from within .NET code)

• Complete System.Object implementation

• Remaining built-in types

• Boxing and unboxing of types

23rd January - 5th February

• Arrays

• Strings

• Floating point types and instructions

83

6th February - 19th February

• Static methods

• Overloaded methods

• Object instantiation, initializers, constructors and finalizers

• Class inheritance and interfaces

20th February - 5th March

• Exceptions

• Type checking

• Visibility modifiers (private, family, assembly, public)

6th March - 19th March

• Better register allocation

• Catch up time, plus any extensions that time allows.

This takes me to the Easter break, which can be used to produce the first

draft of the dissertation in time for the start of Easter term.

