
�������
� � 	
����	����	���������

Jonathan Worthington
University Of Cambridge

������	� � � 	
����	����	���������

What is Parrot?

•A virtual machine for dynamic languages.

•Started out as the Perl 6 internals project –
unlike Perl 5, there was to be a clean
language/runtime boundary.

•Aims to provide support for many
languages and allow interoperability
between them.

•Named after an April Fool’s joke which
referenced a Monty Python sketch. :-)

������	� � � 	
����	����	���������

Dynamic Languages

•Think Perl[56], Python, Ruby, Tcl…

•Often need their parsers available at
runtime

•Classes, methods, functions etc being
created at runtime is not unusual

•Much is done symbolically

•Often have language features like
continuations, closures, co-routines etc.

������	� � � 	
����	����	���������

Why a new VM?

•The JVM and the .NET CLR can handle
dynamic languages, but you re-invent quite
a few wheels when writing the compiler.

•Perl 6 should support the range of
platforms Perl 5 does – which is a lot. Need
something that ports well.

•A chance to innovate; Parrot never was to
be just another JVM clone.

������	� � � 	
����	����	���������

Parrot Architecture

•A register machine

•Contexts capturing the notion of closures,
subroutines/methods and continuations

•Uses continuation passing style

•PMCs: types with a common v-table for
interoperability

•Extensible at the instruction and type level

•Many HLL features supported…

������	� � � 	
����	����	���������

Why virtual register machines?

•VMs have tended to be stack based.

•Easy to compile to

•Leads to compact instruction code

•With a JIT (Just In Time) compiler, you
can get very good performance

•However, register architectures have some
advantages.

������	� � � 	
����	����	���������

Why virtual register machines?

•Stack machines have heavy instruction
dispatch overhead when interpreting,
especially with regard to tweaking the stack
pointer.

•Parrot needs to run well on lots of arcane
platforms - can’t rely on having JIT.

•The cheaper instruction dispatch of register
machines is a big advantage.

•Note .NET is slow to interpret – by design.

������	� � � 	
����	����	���������

Why virtual register machines?

•Another advantage comes when JITing
time – you already have register code,
possibly that needs no further register
allocation; even if it does, still don’t need to
do stack to register mapping.

•Also, 3-address code more suited to
optimization than stack code – don’t rely on
JIT-time optimizations.

•But what about spilling?

������	� � � 	
����	����	���������

Variable size register frames

•Originally had a fixed number of registers.

•Intermediate language compiler provides
“virtual registers”.

•Does register allocation

•Spill to an array

•The register file is just a chunk of memory,
so spilling just leads to wasteful memory
copying => variable sized register frames.

������	� � � 	
����	����	���������

Register Frames

•4 types of registers: Integer, Number,
String, PMC.

•Each sub annotated with the number of
each that it needs.

•2 pointers into the register frame allow
access to all registers.

I Registers N Registers S Registers P Registers

bp bp_sp

������	� � � 	
����	����	���������

Contexts

•A register frame belongs to a context.

•A context is somewhat analogous to a
stack frame – there’s one per invocation of a
sub and a pointer to the caller’s context.

•You also have a context per closure, along
with a pointer to its enclosing context.

•Lexicals are in registers – more later.

•Continuations just a chain of contexts.

������	� � � 	
����	����	���������

Continuation Passing Scheme

•Conceptually, before a call we take a
continuation.

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Continuation

take

������	� � � 	
����	����	���������

Parrot uses Continuation Passing Scheme

•Then pass the continuation along with the
arguments to the sub being called.

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

call chinchilla

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 4
(sub: chinchilla)

������	� � � 	
����	����	���������

Parrot uses Continuation Passing Scheme

•Invoking a continuation involves replacing
the current call chain with what was captured.

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Continuation

invoke

������	� � � 	
����	����	���������

Parrot uses Continuation Passing Scheme

•Conveniently, this turns out to do just what a
return would do (noting that a continuation
captures the program counter too).

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

invoke

Context 1
(sub: main)

Context 2
(sub: monkey)

Context 3
(sub: badger)

Context 4
(sub: chinchilla)

������	� � � 	
����	����	���������

Why Continuation Passing Scheme?

•Parrot has a lot of context information to
save; continuations capture all of it neatly.

•No concerns about over-flowing the stack or
over-writing return addresses, so good from a
security stand-point.

•Tail calls become cheap to implement – just
pass on the already taken continuation.

•Doesn’t this make calling really expensive?

������	� � � 	
����	����	���������

Return Continuation Optimization

•Don’t really copy all of the contexts.

•Give each context a “valid for re-use” flag.

•If a real continuation is taken, then walk
down the contexts chain, marking each one
as invalid.

•Also have a reference count on a context for
how many continuation are using it, so only
need to walk down as far as when the last
continuation was taken.

������	� � � 	
����	����	���������

What is a PMC?

•A PMC defines a type with a certain set of
behaviours and internal representation.

•Implements some of a pre-defined set of
methods that represent behaviours a type
may need to customize, such as integer
assignment, addition, getting the number of
elements, etc.

•Method bodies written in C, but much code
is generated by a build tool.

������	� � � 	
����	����	���������

How do PMCs work?

•Each PMC has a pointer to a v-table.

•When operations are performed on PMCs,
the v-table is used to call the appropriate
PMC method.

•A PMC may inherit from many other PMC
types.

•PMCs are eligible for garbage collection –
may tell the garbage collector what other
PMCs it references too.

������	� � � 	
����	����	���������

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

������	� � � 	
����	����	���������

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

……

0x00C03218v-table

……

PMC

������	� � � 	
����	����	���������

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

……

0x00C03218v-table

……

PMC

……

0x00A42910inc

……

V-table

������	� � � 	
����	����	���������

How do PMCs work?

inc P3
P0 P1 P2 P3 P4 P5 P6 P7

Ref

……

0x00C03218v-table

……

PMC

……

0x00A42910inc

……

V-table
Increment

v-table
function

������	� � � 	
����	����	���������

PMCs allow language specific behaviour

•The same operation in two languages may
produce very different behaviour.

•Consider the increment operator (++)
performed on the string “ABC”.

•In Perl, the string becomes “ABD”.

•In Python, an exception is thrown.

•PerlString and PythonString PMCs can
implement the “increment” method differently.

������	� � � 	
����	����	���������

PMCs support aggregate types

•PMCs have v-table methods for keyed get
and set (where the key is an integer, string or
PMC).

•These provide an interface for implementing
arrays and dictionary data structures (such
as hash tables).

•Storage mechanism left for the PMC to
implement (e.g. a BitArray PMC could be
implemented that uses 1 bit per element).

������	� � � 	
����	����	���������

PMCs enable language interoperability

•A Perl array may exhibit one set of
behaviours (for example, automatically
resizing) to a .NET one (which has a fixed
size).

•As access to elements is through a common
v-table interface, the internal representation
and specific behaviours don’t matter – Perl
code can access elements from a .NET array
and vice versa.

������	� � � 	
����	����	���������

And there’s more…

•PMCs provide the basis for the Parrot class
and object system, with v-table methods
such as add_parent, add_method
find_method, isa, can and more.

•Often used to provide an interface to Parrot
internals and features; continuations and
exceptions are represented as PMCs.

•PMCs simultaneously solve many problems
through a single simple mechanism.

������	� � � 	
����	����	���������

Type extensibility

•As well as being built into the Parrot core,
PMCs may be built into dynamically loaded
libraries and loaded at runtime.

•Build tools make this no harder than writing
PMCs for internal use.

•Currently, most of the Parrot internals are
exposed – potential to crash the VM.

•Parrot needs a way to determine whether
extensions being loaded are “trusted”.

������	� � � 	
����	����	���������

Instruction extensibility

•Can also write extra VM instructions in a
dynamically loaded library.

•Again, good build tools make this easy.

•Assembler needs to load the library, so it
recognizes the mnemonics and can check
the types.

•Can provide specialized, language-specific
instructions without bloating the core VM.

������	� � � 	
����	����	���������

Instruction extensibility good?

•Dynamically loaded instructions can’t
match the performance of core ones – for
example, there is no way to JIT them.

•However, much cheaper dispatch overhead
than calling a method on a PMC.

•They share the same trust issues that
dynamically loaded PMCs do.

•I’m using them quite heavily with my .NET
to Parrot bytecode translator.

������	� � � 	
����	����	���������

Parrot Programs

Parrot programs are mostly represented in one
of three forms (an AST format exists, too).
Higher
Level

PIR = Parrot Intermediate Representation

PASM = Parrot Assembly

PBC = Parrot Bytecode
Lower
Level

������	� � � 	
����	����	���������

Parrot Intermediate Representation
.sub factorial

.param int n

.local int result

if n > 1 goto recurse
result = 1
goto return

recurse:
$I0 = n – 1
result = factorial($I0)
result *= n

return:
.return (result)

.end

Calling
conventions
hidden away

Virtual
registers

Parameter
access syntax

Simple sub
declaration

Named virtual
registers

Return
conventions
hidden

Register code
looks like HLL

������	� � � 	
����	����	���������

What does PASM look like?
factorial:

get_params "(0)", I1
lt 1, I1, recurse
set I0, 1
branch return

recurse:
sub I2, I1, 1

@pcc_sub_call_0:
set_args “(0)”, I2
set_p_pc P0, factorial
get_results “(0)”, I1
invokecc P0
mul I0, I1

return:
@pcc_sub_ret_1:

set_returns “(0)”, I0
returncc

Opcode to get
parameters

Calling
conventions
exposed

Looks like
assembly

Opcodes for
returning

������	� � � 	
����	����	���������

What does PBC look like?

•A portable binary file format.

•Written with the endianness and word
size of the machine that generated it –
good for performance.

•If running on a different type of machine
translation done “on the fly” – good for
portability.

•Can be executed (almost) directly by the
Parrot virtual machine.

������	� � � 	
����	����	���������

Why PIR, PASM and PBC?

•Need something that is efficient to load and
directly execute – PBC

•Need something small to distribute – PBC

•Need something that is human readable and
writable. – PIR or PASM

•Need a way to abstract away details (like
calling conventions) from compilers – PIR

•Need low level assembly language – PASM

������	� � � 	
����	����	���������

Looking at some HLL features

•Parrot provides support for a lot of HLL
features to ensure interoperability.

•For example, it’s nice if a Perl closure can
be passed to some Common LISP code.

•If closures weren’t implemented at a VM
level, different compilers could do them
differently.

•The final part of the talk looks at a few of
the more interesting HLL features in Parrot.

������	� � � 	
����	����	���������

Lexical variables

•The needs of various languages with
regards to lexical (statically scoped)
variables differ somewhat.

•Many languages need to be able to look
them up by name.

•Some but not all languages know what
lexical variables they’ll have at compile time.

•Then there’s nesting and closures to think
about...

������	� � � 	
����	����	���������

Lexical variables

•When lexicals are known at compile time,
they can simply be stored in a register.

•PIR syntax to associate name/register.

•LexInfo PMC stores these mappings in a
hash table.

•Good performance – no need for “by
name” lookup in common case and the
mappings are frozen at compile time.

.lex “$x”, P2

������	� � � 	
����	����	���������

Lexical variables

•Some languages don’t know about lexicals
until runtime (e.g. Tcl).

•Can’t associate a register with it; instead
always lookup and store through ops.

•LexPad PMC stores the lexical variables
in a hash table, with their names being
the keys.

store_lex “x”, P0
...
P0 = find_lex “x”

������	� � � 	
����	����	���������

Lexical variables - nesting

•Nesting is specified though a :outer(…)
modifier on a sub.

•Take the following example Perl 6 program,
which gives the result 42:
my $a = foo();
say $a();

sub foo() {
my $x = 42;
sub bar() { return $x; }
return &bar; # Returns bar, doesn’t call it

}

������	� � � 	
����	����	���������

Lexical variables - nesting

•Compiles to something like the following:
.sub foo

.lex “$x”, P0
P0 = new Integer
P0 = 42
P1 = find_global “bar”
.return(P1)

.end

.sub bar :outer(foo)
P0 = find_lex “$x”
.return(P0)

.end

.sub _main :main
.lex “$a”, P0
P0 = foo()
P1 = P0()
print P1
print “\n”

.end

������	� � � 	
����	����	���������

Lexical variables - closures

•A closure captures it’s lexical environment.

•This is formed by walking down the
“outer chain” (not the call chain) and
adding each lexical pad to it.

•Optimization possible if we encounter an
existing lexical environment.

•Nested subs are really creating a closure
anyway – they’re just closures that can take
parameters.

������	� � � 	
����	����	���������

Namespaces

•Another places where different languages
want different things, but we still want to
have interoperability.

•Policy as well as technical issues.

•Where does a language put its guts?

•Are language’s namespaces kept apart?

•What about languages with sigils ($a,
@b) sharing with those that don’t (a, b)?

������	� � � 	
����	����	���������

Namespaces - policy

•Top level namespaces will be:

• HLL names, in lowercase, for user
defined namespaces and data (perl6)

•HLL names, in lowercase and prefixed
with an underscore, for language
internals (_perl6)

•This does mean that to use classes from
another language, you’d need to know what
language they were written in, unlike .NET.

������	� � � 	
����	����	���������

Namespaces - implementation

•Namespaces are hierarchical – that is,
“Monkey::Abu” has the Abu namespace as a
member of the Monkey namespace.

•A namespace itself is implemented as a
PMC, and thus languages can provide their
own specialised implementation.

•The (raw) interface is just a dictionary
mapping names to PMCs (recall classes,
subs, etc are PMCs).

������	� � � 	
����	����	���������

Namespaces – implementation

•The raw interface is fine for use when the
namespace “belongs” to the current HLL.

•HLL code knows about name mangling
and sigils.

•Additionally have a typed interface.

•Hides away the quirks of a particular
HLL’s naming scheme.

•Allows for HLL interoperability.

������	� � � 	
����	����	���������

Namespaces – typed interface

•The typed interface is provided as a
number of methods on a namespace PMC.

•Add, delete and find operations.

•Differentiates between namespaces,
subs and variables.

•Only about naming – no type checking.

•Doesn’t handle the scalar/array/hash sigil
distinction, but can figure that out at runtime.

������	� � � 	
����	����	���������

Namespaces – export/import

•Exporter push rather than importer pull.

•“export_to” method on namespace PMC is
provided with a list of symbols to export and
the namespace to export them to.

•Empty/null list => default exports

•Will usually use the typed interface on the
destination namespace, but shortcuts and
other evil are possible – just check the type
of the namespace you’re exporting to.

������	� � � 	
����	����	���������

Calling conventions

•Need a fairly rich calling convention to
handle the needs of a wide variety of
languages.

•This means Parrot needs to provide…

•Both positional and named parameters

•Optional parameters

•“Slurpy” parameters

•Multi-method dispatch

������	� � � 	
����	����	���������

Calling conventions – under the hood

•PIR syntax, as shown earlier, hides away
the details.

•Actually have 4 instructions: set_args,
get_params, set_returns and get_results.

•Take a signature PMC and a variable
number of operands specifying the register
number for each argument/return value.

•Register type comes from the signature.

������	� � � 	
����	����	���������

Calling conventions – performance

•In general, we can’t perform as well as VMs
such as .NET and the JVM, since the calling
conventions are more complex.

•However, simple cases can be JITted.

•Furthermore, simple cases of tail calling
can be optimized to iteration at JIT time.

•We can run the Languages Shootout
Ackerman’s function benchmark faster than
optimized C (by GCC) on x86 and PPC!

������	� � � 	
����	����	���������

Future directions

•Parrot is still missing some Important Stuff.

•Concurrency control – the plan is to
implement STM, which will be needed to
support Perl 6’s more declarative style of
concurrency (atomic and async blocks).

•Completion of IO, AIO and events

•Security subsystem (VMS inspired)

•Parrot Grammar Engine for parsing

������	� � � 	
����	����	���������

Conclusions

•Parrot has some notable differences to the
JVM and the .NET CLR.

•Trying to support many existing and quite
different languages isn’t trivial.

•There’s much left to do, but also much
already done – Parrot is running notable
subsets of a range of languages.

•Any questions?

