
Understanding Roles,
Constraints And Classes

Jonathan Worthington
London Perl Workshop 2006

Understanding Roles, Constraints And Classes

Perl 6 will be
out for

Christmas.

Understanding Roles, Constraints And Classes

�����

���	�
�

��
���

�

Understanding Roles, Constraints And Classes

Not this
Christmas.

Understanding Roles, Constraints And Classes

������������

����
��������

����

� ��� ���

Understanding Roles, Constraints And Classes

Perl 6
�The language has been designed from
the ground up; the implementation has
been built from scratch

�Language wise, not backward
compatible (Perl 5 programs will not
usually be valid Perl 6 programs), but:
�Source code translator
�use perl5:Some::Module;

Understanding Roles, Constraints And Classes

Object Oriented Perl
�Many things have changed in Perl 6
�Object orientation is no exception

�Nicer syntax
�Attempts to provide one way to do
things, rather than the many that
appeared in Perl 5 (but you can still
do other stuff if you like)

�Roles – more later!

Understanding Roles, Constraints And Classes

Classes

Understanding Roles, Constraints And Classes

What Are Classes Used For?
� Instance Management

�Classes “create” objects
�Alternatively, you can view a class as
a kind of blueprint for how to create
an object

�Classes define both the state and
behaviour that an object has, and
relate them

Understanding Roles, Constraints And Classes

What Are Classes Used For?
�Code re-use

�We often try to design classes to do
one particular thing

�That means that, ideally, they can be
re-used to do that thing multiple
times, potentially in multiple programs

Understanding Roles, Constraints And Classes

What Are Classes Used For?
�Providing a route to polymorphism

�This means that the same code can
safely operate of values of different
types

� Inheritance relationships state that
one class can be used in place of
another

�Essentially, enables more re-use

Understanding Roles, Constraints And Classes

Classes In Perl 6
� Introduce a class using the class
keyword
�With a block:

�Or without to declare that the rest of
the file describes the class.

class Puppy {
…

}

class Puppy;

�����
�		���� ��

 !"�#�

�����
�		���� ��

 !"�#�

�����

�����
�		���� ��

 !"�#�

�����

$�%���

�����
�		���� ��

 !"�#�

�����

$�%��� ���	

Understanding Roles, Constraints And Classes

Attributes
� Introduced using the has keyword

�All attributes in Perl 6 are stored in an
opaque data type

�Hidden to code outside of the class

class Puppy {
has $name;
has $colour;
has @paws;
has $tail;

}

Understanding Roles, Constraints And Classes

Accessor Methods
�We want to allow outside access to
some of the attributes

�Writing accessor methods is boring!
�$. means it is automatically generated

class Puppy {
has $.name;
has $.colour;
has @paws;
has $tail;

}

Understanding Roles, Constraints And Classes

Mutator Methods
�We should be able to change some of
the attributes

�Use is rw to generate a mutator
method too

class Puppy {
has $.name is rw;
has $.colour;
has @paws;
has $tail;

}

�&&��

�&&��

���'(��)��*

�&&��

���'(��)��*

���+���	

�&&��

���'(��)��*

���+���	

%	��+��+������

Understanding Roles, Constraints And Classes

Methods
�The new method keyword is used to
introduce a method

�Parameters go in a parameter list; the
invocant is optional!

method bark() {
say “w00f!”;

}

method chew($item) {
$item.damage++;

}

Understanding Roles, Constraints And Classes

Attributes In Methods
�Attributes can be accessed with the $.
syntax, via their accessor

�To get at the actual storage location,
$colour can be used

method play_in_garden() {
$.colour = 'black';

}

method play_in_garden() {
$colour = 'black';

}

Understanding Roles, Constraints And Classes

Attributes In Methods
� If there is a conflict with a lexical
variable, you can use $!colour

�This is because all (private) attributes
inside the class really have the ! In their
name; can use it to emphasize
privateness.

method play_in_garden() {
$!colour = 'black';

}

has $!tail;

Understanding Roles, Constraints And Classes

Consuming A Class
�A default new method is generated for
you that sets attributes

�Also note that -> has become .
my $puppy = Puppy.new(

name => 'Rosey',
colour => 'white‘

);
$puppy.bark(); # w00f!
say $puppy.colour; # white
$puppy.play_in_garden();
say $puppy.colour; # black

Understanding Roles, Constraints And Classes

A Note On Instantiation
�Another common way to write the
instantiation code is this

�The .= method means “call a method
on myself and assign the result to me”

�$puppy is undefined, but we know its
class, so can call the new method

my Puppy $puppy .= new(
name => 'Rosey',
colour => 'white‘

);

Understanding Roles, Constraints And Classes

Delegation
�Sometimes, one of the attributes
contains a method that we want to
expose in the current class; we could
write a method like this:

�Use delegation instead; modify the
declaration of $tail

method wag() {
$tail.wag();

}

has $tail handles 'wag';

Understanding Roles, Constraints And Classes

Inheritance
�A puppy is really a dog, so we want to
implement a Dog class and have Puppy
inherit from it

� Inheritance is achieved using the is
keyword

class Dog {
…

}
class Puppy is Dog {

…
}

Understanding Roles, Constraints And Classes

Multiple Inheritance
�Multiple inheritance is possible too; use
multiple is statements

class Puppy is Dog is Pet {
…

}

Understanding Roles, Constraints And Classes

Roles

Understanding Roles, Constraints And Classes

In Search Of Greater Re-use
� In Perl 6, roles take on the main role of
software re-use, leaving classes to deal
with instance management

�We need to implement a walk method
for our Dog class

�However, we want to re-use that in the
Cat and Pony classes too

�What are our options?

Understanding Roles, Constraints And Classes

The Java, C# Answer
�There’s only single inheritance
�You can write an interface, which
specifies that a class must implement a
walk method

�Write a separate class that implements
the walk method

�You can use delegation (hand coded)
�Sucks

Understanding Roles, Constraints And Classes

The Multiple Inheritance Answer
�Write a separate class that implements
the walk method

� Inherit from it to get the method
�Feels wrong linguistically

�“A dog is a walk” – err, no
�“A dog does walk” – what we want

�Multiple inheritance has issues…

Understanding Roles, Constraints And Classes

Multiple Inheritance Issues
�The diamond inheritance problem

�Do we get two copies of
A’s state?

� If B and C both have a
walk method, which do
we choose?

� Implementing multiple inheritance is
tricky too

A

B C

D

Understanding Roles, Constraints And Classes

Mix-ins
�A mix-in is a group of one or more
methods than can not be instantiated
on their own

�We take a class and “mix them in” to it
�Essentially, these methods are added
to the methods of that class

�Write a Walk mixin with the walk
method, mix it in.

Understanding Roles, Constraints And Classes

How Mix-ins Work
�Defined in terms of single inheritance

�C with M1 and M2 mixed in is,
essentially, an anonymous subclass

M1

C

M2 M1

C

M2

����������	

Understanding Roles, Constraints And Classes

Issues With Mix-ins
� If M1 and M2 both have methods of the
same name, which one is chosen is
dependent on the order that we mix in
�Fragile class hierarchies again

�Further, mix-ins end up overriding a
method of that name in the class, so
you can’t decide which mix-in’s method
to actually call in the class itself

Understanding Roles, Constraints And Classes

The Heart Of The Problem
�The common theme in our problems is
the inheritance mechanism

�Need something else in addition
�We want

�To let the class be able to override
any methods coming from elsewhere

�Explicit detection and resolution of
conflicting methods

Understanding Roles, Constraints And Classes

Flattening Composition
�A role, like a mix-in, is a group of
methods

� If a class does a role, then it will have
the methods from that role, however:
� If two roles provide the same method,
it’s an error, unless the class provides
a method of that name

�Class methods override role methods

Understanding Roles, Constraints And Classes

Creating Roles
�Roles are declared using the role
keyword

�Methods declared just as in classes
role Walk {

method walk($num_steps) {
for 1..$num_steps {

.step for @paws;
}

}
}

Understanding Roles, Constraints And Classes

Composing Roles Into A Class
�Roles are composed into a class using
the does keyword

�Can compose as many roles into a
class as you want

�Conflict checking done at compile time
�Works? Not quite…

class Dog does Walk {
…

}

Understanding Roles, Constraints And Classes

Composing Roles Into A Class
�Notice this line in the walk method:

�Can state that a role “shares” an
attribute with the class it is composed
into using has without . or !

�Note: to use this currently in Pugs, you
must use:

.step for @paws;

has @paws;

.step for @!paws;

Understanding Roles, Constraints And Classes

Additional Safety
�We want to be sure that when we
compose our role, the items in @paws
will have the step method.

�Assuming the Paw class has the step
method, we can add a type annotation
to the has declaration in both the role
and the class, stating that elements of
the array must be of the class Paw.

has Paw @paws;

Understanding Roles, Constraints And Classes

Parametric Polymorphism
�Polymorphism = code can work with
values of different types

�Parametric = a type has a type variable
in that we replace with a type
parameter

�What is the type of the invocant (self)
for a method in a role?
�That of the class we compose it into

Understanding Roles, Constraints And Classes

Parametric Polymorphism
�The types of roles are therefore
parametric

�They are parameterised on the type of
the class that we compose the role into
�Compose Walk into class Dog, the
invocant has type Dog

�Compose Walk into class Cat, the
invocant has type Cat

Understanding Roles, Constraints And Classes

Constraints

Understanding Roles, Constraints And Classes

Refinement Types
�A type classifies a value

�For example, 42 is an integer
�Therefore for each type there is a
(possibly infinite) set of values that
could be classified as that type

�Constrains are refinement types
�Take an existing type
�Restrict the values in it further

Understanding Roles, Constraints And Classes

EvenInt
�An EvenInt will be a refinement of the
Int type that can only hold even values

�Declare it using the subset keyword

�Variables with the secondary sigil ^
hold parameters that the block has
been passed; the lexicographically first
name gets the first parameter, etc.

my subset EvenInt of Int
where { $^n % 2 == 0 };

Understanding Roles, Constraints And Classes

Making Walk More General
�We may want to use the Walk role for
humans too

�Humans have feet, not paws
�We’d like @paws to contain something
that has the step method, but in reality
it may contain Foot or Paw objects

Understanding Roles, Constraints And Classes

Making Walk More General
�Define a refinement type that requires
the step method (Any = any type)

�Use this in the has declaration in the
class and the role

has Walkable @paws;

my subset Walkable of Any
where { .can('step‘) };

Understanding Roles, Constraints And Classes

Review

Understanding Roles, Constraints And Classes

Random Bits
Refinement type for things that have the
step method
my subset Walkable of Any

where { .can('step‘) };

A Paw class
class Paw {

method step() {
say "plod";

}
}

Understanding Roles, Constraints And Classes

The Walk Role
role Walk {

has Walkable @paws;

method walk($num_steps) {
for 1..$num_steps {

.step for @!paws;
}

}
}

Understanding Roles, Constraints And Classes

The Dog Class
class Dog does Walk {

has $.name is rw;
has $.colour;
has Walkable @paws = (Paw.new() xx 4);
has $tail handles 'wag';

method bark() {
say "WOOF!";

}
method play_in_garden() {

$colour = 'black';
}

}

Understanding Roles, Constraints And Classes

The Puppy Class
class Puppy is Dog {

Add a chew method.
method chew($item) {

$item.damage++;
}

Override Dog’s bark method
method bark() {

say "w00f!";
}

}

Understanding Roles, Constraints And Classes

And Finally…
pugs> my Puppy $puppy .= new(

name => 'Rosey',
colour => 'white‘

);
pugs> $puppy.walk(2);
plod
plod
plod
plod
plod
plod
plod
plod

Understanding Roles, Constraints And Classes

The End

Understanding Roles, Constraints And Classes

w00f!

Understanding Roles, Constraints And Classes

Questions?

