
�������

� �	
���� �������

Jonathan Worthington
Scarborough Linux User Group



�������� �	
���� �������

Introduction



�������� �	
���� �������

What does a Virtual Machine do?

•Hides away the details of the hardware 
platform and operating system.

•Defines a common set of instructions.

•Abstracts away operating system details

•Efficiently translates the virtual instructions 
to those supported by the hardware CPU.

•Provides support for high level language 
constructs (such as subroutines, OOP).



�������� �	
���� �������

Why Virtual Machines?

1. Simplified software development and 
deployment.

Program 1

Compile For 
Each Platform

Program 2

Compile For 
Each Platform

Without a VM



�������� �	
���� �������

Why Virtual Machines?

1. Simplified software development and 
deployment.

VM Supports Each 
Platform

With a VM

Program 1 Program 2

VM

Compile to the VM



�������� �	
���� �������

Why Virtual Machines?

2. High level languages have a lot in 
common.

• Strings, arrays, hashes, references, …

• Subroutines, objects, namespaces, …

• Closures and continuations

• Memory management

Can implement these just once in the VM.



�������� �	
���� �������

Why Virtual Machines?

3. High level language interoperability 
becomes easier.

• A consistent way to call subroutines and 
methods.

• A common representation of data types: 
strings, arrays, objects, etc.

• Code in multiple languages essentially 
runs as a single program.



�������� �	
���� �������

Why Virtual Machines?

4. Can provide fine grained security and 
quota restrictions.

• “This program can connect to server 
X, but can not access any local files.”

5. Debugging and profiling more easily 
supported.

6. Possibility of dynamic optimizations by 
exploiting what is known at runtime but not 
be known at compile time.



�������� �	
���� �������

A Few Well Known VMs

•The JVM (Java Virtual Machine)

•.Net CLR (Common Languages Runtime)

•Parrot

•Many things you might not call VMs…

•For example, the Perl 5, or Python, or 
Ruby interpreter could in many ways be 
considered a VM; they are just closely 
tied to the language.



�������� �	
���� �������

Stack and 
register 

architectures



�������� �	
���� �������

Stack and register machines

Most virtual machines, including .NET and 
JVM, are implemented as stack machines.

push 17

push 25

add



�������� �	
���� �������

Stack and register machines

Many virtual machines, including .NET and 
JVM, are implemented as stack machines.

17push 17

push 25

add



�������� �	
���� �������

Stack and register machines

Many virtual machines, including .NET and 
JVM, are implemented as stack machines.

17

17
25

push 17

push 25

add



�������� �	
���� �������

Stack and register machines

Many virtual machines, including .NET and 
JVM, are implemented as stack machines.

17

17
25

42

push 17

push 25

add

+



�������� �	
���� �������

Stack and register machines

Other virtual machines, such as Parrot, use 
registers. A register is a numbered storage 
location for holding working data.

I0 I1 I2 I3 I4 I5 I6 I7

17 25



�������� �	
���� �������

Stack and register machines

The add instruction in Parrot adds the values 
stored in two registers and stores the result in 
a third.

add I1, I3, I4
I0 I1 I2 I3 I4 I5 I6 I7

17 25



�������� �	
���� �������

Stack and register machines

The add instruction in Parrot adds the values 
stored in two registers and stores the result in 
a third.

add I1, I3, I4
I0 I1 I2 I3 I4 I5 I6 I7

17 25

+



�������� �	
���� �������

Stack and register machines

The add instruction in Parrot adds the values 
stored in two registers and stores the result in 
a third.

add I0, I3, I4
I0 I1 I2 I3 I4 I5 I6 I7

17 25

+

42



�������� �	
���� �������

Register machine advantages

•What could be expressed in one register 
instruction took at least three stack 
instructions.

•When interpreting code (rather than JITing
– more later), there is overhead for mapping 
each virtual instructions to a real one at 
runtime, so less instructions is better.



�������� �	
���� �������

Running virtual 
machine code



�������� �	
���� �������

Running Virtual Machine Code

•There are a number of ways to execute code 
in the instruction set of the virtual machine on 
real hardware.

•Generally, the most portable solution (that 
works on most platforms) will be the 
slowest…

•…and the fastest ones will be the least 
portable.



�������� �	
���� �������

The “function per instruction” approach

•Have one C function per instruction.

•Build a big array of pointers to those 
functions; array index = instruction code.

•Execute instructions by looking up the 
function appropriate in the table then calling 
it.

•Completely portable, but performance hit 
due to making a function call per instruction.



�������� �	
���� �������

The “switch” approach

•A huge “switch” statement with one case for 
each instruction.

•After executing an instruction, the program 
counter is increment and we jump back to the 
top of the switch block again (using goto).

•Performance depends heavily on the code 
the compiler generates for switch blocks, but 
no per-op function call overhead is a bonus.

•Also completely portable.



�������� �	
���� �������

The “computed” goto approach

•GCC allows goto to jump to a memory 
address computed at runtime rather than a 
named label like most other compilers!

•Write C code for each instruction in a single 
function, prefix it with a label and build a table 
of label addresses.

•After executing each instruction, look up the 
address of the C code for the next instruction 
using the table and goto that address.



�������� �	
���� �������

The “computed” goto approach
•Computed goto performs better than the 
previous two approaches, worse than JIT.

•However, it only works on a small number of 
compilers, so not very portable.

•Code that uses computed goto interacts 
nastily with the C compiler’s optimizer –
basically the optimizer can’t do much with it.

•Tends to mean that the computed goto core 
takes a lot of time and memory to compile.



�������� �	
���� �������

What is a JIT compiler?

•Just In Time means that a chunk of 
bytecode is compiled when it is needed.

•Compilation involves translating Parrot 
bytecode into machine code understood by 
the hardware CPU.

•High performance – can execute some 
Parrot instructions with one CPU instruction.

•Not at all portable – custom implementation 
needed for each type of CPU.



�������� �	
���� �������

How does JIT work?

•For each CPU, write a set of macros that 
describe how to generate native code for the 
VM instructions.

•Do not need to write these for every 
instruction; can fall back on calling the C 
function function that implements it.

•A Configure script determines the CPU type 
and selects the appropriate JIT compiler to 
build if one is available.



�������� �	
���� �������

How does JIT work?

•A chunk of memory is allocated and marked 
executable if the OS requires this.

•For each instruction in the chunk of 
bytecode that is to be translated:

•If a JIT macro was written for the 
instruction, use that to emit native code.

•Otherwise, insert native code to call the C 
function implementing that method, as an 
interpreter would.



�������� �	
���� �������

Memory 
Management



�������� �	
���� �������

Memory Management

•During their execution, programs allocate 
memory for storing working data in.

•Often this memory is only used for a short 
amount of time.

•There is only a finite amount of memory 
available to use, so programs need to free up 
memory that is no longer being used.

•Traditionally programs did this themselves, 
e.g. through malloc() and free() in C.



�������� �	
���� �������

What is GC (Garbage Collection) and why?

•Garbage collection systems automate the 
freeing of memory when it is no longer in use.

•The programmer is no longer responsible for 
freeing memory meaning:

•No memory leaks.

•No chance of accidentally freeing things 
that are still in use.

•Faster development.



�������� �	
���� �������

An “Easy” Solution: Reference Counting

•Just one approach to garbage collection, 
used in Perl 5 and many other interpreters.

•Every object has a reference count – a value 
that keeps track of the number of variables 
and other objects that refer to that object.

•When the reference count reaches zero, 
there is no way the object could be accessed, 
so it is no longer in use, therefore it can be 
freed.



�������� �	
���� �������

Reference Counting Not Really Easy

•Very easy to forget to increment or 
decrement the reference count as needed.

•VM code littered with reference count 
manipulation.

•Circular data structures never get freed as 
their reference count never reaches zero.

A B



�������� �	
���� �������

Reachability Based GC

•Initially consider all objects dead (that is, 
unreachable).

A

B

C

D

E

F



�������� �	
���� �������

Reachability Based GC

•Mark any objects that are referenced by 
registers or on the stack as live.

P0 P1 P2 P3

F
A

B

C

D

E

F

E



�������� �	
���� �������

Reachability Based GC
Transitively mark objects referenced by live 
objects as alive.

P0 P1 P2 P3

F
A

B

C

D

E

F

E



�������� �	
���� �������

Reachability Based GC

•Objects that were not marked alive can thus 
have the memory associated with them freed.

A

B

C



�������� �	
���� �������

Developing 
Virtual 

Machines



�������� �	
���� �������

Regression Testing

•No two teams developing a VM are the 
same, but they all use regression testing.

•Each time a feature is added to the VM or a 
bug is found, write some test code that tests 
the feature or produces the bug.

•Tests can all be run automatically and their 
output checked.

•Breakage or bugs that re-surface will be 
spotted quickly.



�������� �	
���� �������

Regression Testing

•Can also write tests before features are 
implemented to ensure they work as 
expected when implemented.

•Test Driven Development (TDD)

•Also useful for ensuring that multiple 
implementations of the same VM produce the 
same results.

•Good for Harmony project, implementing 
open source JVM.



�������� �	
���� �������

Build Tools

•Build tools are often used to avoid writing a 
lot of boring and repetitive code by hand.

•For example, Parrot implements many 
different run-cores (function per instruction, 
switch, computed goto).

•The code for each instruction is only written 
once and the function headers, switch block 
or goto code is generated automatically.



�������� �	
���� �������

Platform Awareness

•It’s important to try and write code that will 
run on platforms with…

•Different compilers

•Different byte order and word order

•Different system APIs

•A character encoding other than ASCII

•Some platforms are really weird.



�������� �	
���� �������

Getting Involved

•The first step is to download the source, 
compile and play with a VM…

•http://www.parrotcode.org/

•http://incubator.apache.org/harmony/

•Read the docs, play around, find bugs!

•Report ‘em, or write a patch – both are 
helpful.

•Who knows where it may lead…



�������� �	
���� �������

The End



�������� �	
���� �������

Any 
questions?


