
Translating .Net Libraries

To Parrot

Jonathan Worthington

YAPC::EU::2006

Translating .Net Libraries To Parrot

The Problem

Love virtual machines did he,

Shared libraries made his day.

But libraries for VM B,

Wouldn’t work on VM A.

Translating .Net Libraries To Parrot

Motivation

�Virtual machines are good.

�Abstract away the operating system

and hardware, easing deployment

�May provide higher level constructs

than real hardware, so easier to

compile to

�Safety and security benefits

� Inter-operability between languages

Translating .Net Libraries To Parrot

Motivation

�Shared libraries are good.

�More generally, code re-use in

general is good

�For libraries compiled to native

(machine) code, calling into them is

easy…

�Common calling conventions…

�…and a jump instruction.

Translating .Net Libraries To Parrot

Motivation

�What about libraries written in

languages that run atop of a VM?

�Fine if they both compile down to (or

libraries are available for) both VMs.

� If not there’s a problem!

�Different VMs have different instruction

sets, provide different levels of support

for HLL constructs, etc.

Translating .Net Libraries To Parrot

Possible Solution #1

�Modify the compiler for the HLL to emit

code for another VM.

�Can lead to high quality output code.

Need source of HLL compiler and the

library – maybe not available!

If there are libraries in multiple HLLs,

we have multiple compilers to modify.

Need to worry about HLL semantics.

Translating .Net Libraries To Parrot

Possible Solution #2

�Embed one VM inside another.

�A quick way to something that

basically works.

�No issues matching semantics.

Making calls into the other VM

transparent means duplicating state.

Have memory footprint of both VMs

Performance issues over boundary

Translating .Net Libraries To Parrot

Possible Solution #3

�Translate bytecode for VM A to

bytecode for VM B.

�Independent of the HLL

�Translating a small(ish) number of

well defined instructions

�VM B’s “native” code => performance

A lot of initial implementation effort to

get something usable.

Translating .Net Libraries To Parrot

The Chosen Solution

�Bytecode translation appeared to be

the best compromise, so I went with

that.

�Chose to translate .Net bytecode to run

on the Parrot VM.

Translating .Net Libraries To Parrot

Planning

So a translator he conceived;

Designed so it would be,

Declarative and pluggable,

To manage complexity.

Translating .Net Libraries To Parrot

Why It’s Hard

�Parrot is a register machine, while .Net

is a stack machine.

�A .Net library isn’t just a sequence of

instructions, but metadata too.

�Set of tables listing classes, fields,

methods, signatures, etc.

�Some .Net instructions/constructs have

no direct Parrot equivalent.

Translating .Net Libraries To Parrot

Other Issues

�Code to translate an instruction will

often be pretty similar. Repetitive code

is bad.

�Multiple solutions to mapping stack

code to register code; want to have

simple one at first, the implement and

benchmark advanced ones later.

�Want reasonably high performance

from the translator.

Translating .Net Libraries To Parrot

Metadata Translator

�Partly written in C (reading the .Net

assembly), partly in PIR (code

generation).

�C-PIR interface through PMCs (Parrot

types implemented in C).

�Can generate class and method stubs

with the metadata translator; instruction

translator fills in the method bodies

with the translated code.

Translating .Net Libraries To Parrot

Declarative Instruction Translation

�Create a declarative “mini-language” to

specify how to translate instructions.

[add][add][add][add]

code = 58code = 58code = 58code = 58

class = opclass = opclass = opclass = op

pop = 2pop = 2pop = 2pop = 2

push = 1push = 1push = 1push = 1

instruction = ${DEST0} = ${STACK0} + ${STACK1}instruction = ${DEST0} = ${STACK0} + ${STACK1}instruction = ${DEST0} = ${STACK0} + ${STACK1}instruction = ${DEST0} = ${STACK0} + ${STACK1}

typeinfotypeinfotypeinfotypeinfo ==== typeinfotypeinfotypeinfotypeinfo_bin_num_op(${STYPES}, ${DTYPES})_bin_num_op(${STYPES}, ${DTYPES})_bin_num_op(${STYPES}, ${DTYPES})_bin_num_op(${STYPES}, ${DTYPES})

.Net instruction name and number.

Number of items it takes from/puts

onto the stack

Type of instruction (branch, load, …)

The Parrot instruction to generate. Type transform

Translating .Net Libraries To Parrot

Pluggable Stack To Register Mapping

�Need to turn stack code into register

code.

� Ideally, want a translation like this:

ldcldcldcldc.i4 30.i4 30.i4 30.i4 30

ldcldcldcldc.i4 12.i4 12.i4 12.i4 12

addaddaddadd

stlocstlocstlocstloc.1.1.1.1

add local0, 30, 12add local0, 30, 12add local0, 30, 12add local0, 30, 12

Translating .Net Libraries To Parrot

Pluggable Stack To Register Mapping

�Want to do something easy first.

�Use a Parrot array PMC to emulate

the stack => slow, but simple.

�Pop stuff off the stack into registers

to do operations on them.

ldcldcldcldc.i4 30.i4 30.i4 30.i4 30

ldcldcldcldc.i4 12.i4 12.i4 12.i4 12

addaddaddadd

stlocstlocstlocstloc.1.1.1.1

push s, 30push s, 30push s, 30push s, 30

push s, 12push s, 12push s, 12push s, 12

$I0 = pop s$I0 = pop s$I0 = pop s$I0 = pop s

$I1 = pop s$I1 = pop s$I1 = pop s$I1 = pop s

$I2 = add $I0, $I1$I2 = add $I0, $I1$I2 = add $I0, $I1$I2 = add $I0, $I1

push s, $I2push s, $I2push s, $I2push s, $I2

Translating .Net Libraries To Parrot

Pluggable Stack To Register Mapping

�Later, want to implement something

more complex.

�So make stack to register mapping

pluggable.

�Define set of hooks (pre_branch,

post_branch, pre_op, post_op, etc.)

�Stack to register mapping module

implements these.

Translating .Net Libraries To Parrot

Stack Type State Tracking

�When data is placed on the stack, we

always know its type (integer, float,

object reference, etc).

�But “add” instruction (for example)

could be operating on integers or floats

=> need to map stack locations to

correct Parrot register types.

�Track the types of values on the stack

using simple data flow analysis.

Translating .Net Libraries To Parrot

Building The Translator

�The translator generator (written in

Perl) takes…

�A file of instruction translation

declarations.

�A stack to register mapper (also

written in Perl, generating PIR code)

�Outputs a translator in Parrot

Intermediate Representation (PIR).

Translating .Net Libraries To Parrot

Overall Design

Translating .Net Libraries To Parrot

Implementation

For weeks he toiled day and night,

Fuelled by chocolate and caffeine,

And wove his dreams into code:

A translator like none e’er seen!

Translating .Net Libraries To Parrot

Early Days (Oct – Nov)

�The metadata translator was partially

implemented first (since the instruction

translated depended on it).

�Generated class and method stubs.

�Method stubs did parameter fetching

and local variable declaration.

�Stress tested with large DLLs from the

.Net class library.

Translating .Net Libraries To Parrot

Basic Instructions (Nov to Dec)

� Instruction translator implemented as

described earlier.

�Wrote translation rules for arithmetic

and logical operations, load and store

of local variables and parameters and

branch instructions.

�Regression testing all of these from the

start.

Translating .Net Libraries To Parrot

Then It Got Harder…

�Work in 2005 had been about building

translation infrastructure and getting

some basic translation going.

�Work in 2006 involved translating more

complex instructions and constructs.

�Many of them described in detail in The

Dissertation (on the conference CD);

won’t look at them here.

Translating .Net Libraries To Parrot

A More Advanced SRM

�Wanted to generate better register

machine code.

� Idea (from paper!): map each stack

location to a register.

Translating .Net Libraries To Parrot

A More Advanced SRM

�Means that we don’t need to emulate

the stack – much better performance.

�Real register code, so the optimizer

has a chance.

�But still lots of needless data copying…

ldcldcldcldc.i4 30.i4 30.i4 30.i4 30

ldcldcldcldc.i4 12.i4 12.i4 12.i4 12

addaddaddadd

stlocstlocstlocstloc.1.1.1.1

$I0 = 30$I0 = 30$I0 = 30$I0 = 30

$I1 = 12$I1 = 12$I1 = 12$I1 = 12

$I2 = add $I0, $I1$I2 = add $I0, $I1$I2 = add $I0, $I1$I2 = add $I0, $I1

local1 = $I2local1 = $I2local1 = $I2local1 = $I2

Translating .Net Libraries To Parrot

A More Advanced SRM

� Idea: do loads of constants, local

variables and parameters lazily.

� Instead of emitting a register copy,

store the name of the source register.

�Emit that directly into instruction that

uses it.
ldcldcldcldc.i4 30.i4 30.i4 30.i4 30

ldcldcldcldc.i4 12.i4 12.i4 12.i4 12

addaddaddadd

stlocstlocstlocstloc.1.1.1.1

$I2 = add 30, 12$I2 = add 30, 12$I2 = add 30, 12$I2 = add 30, 12

local1 = $I2local1 = $I2local1 = $I2local1 = $I2

Translating .Net Libraries To Parrot

Evaluation

It passed all the regression tests,

Such beautiful code it made.

Class libraries were thrown at it,

And class upon class it slayed.

Translating .Net Libraries To Parrot

What Can Be Translated?

�197 out of 213 instructions (over 92%)

�Local variables, arithmetic and logical

operations, comparison and branching

instructions

�Calling methods, parameter passing

�Arrays

�Managed pointers

�Exceptions (try, catch, finally blocks)

Translating .Net Libraries To Parrot

What Can Be Translated?

�Object Oriented Features

�Classes, abstract classes and

interfaces

� Inheritance

�Static/instance fields and methods

� Instantiation, constructors

�And various other odds and ends!

�Regression tests for each of these.

Translating .Net Libraries To Parrot

A More Realistic Test

�Supply libraries from the Mono

implementation of the .Net class library

to the translator

�See how many classes it can translate

from each of the libraries

�Results: 4548 out of 5881 classes were

translated (about 77%) ☺

�(Not accounting for dependencies �)

Translating .Net Libraries To Parrot

A More Realistic Test

�What stops us translating 100% of the

.Net class library?

�A big missing feature is reflection.

�Also need to hand-code 100s of

methods built into the .Net VM – a long

job.

Translating .Net Libraries To Parrot

Comparing Stack To Register Mappers

�The Optimising Register SRM gave the

best performing output in a Mandelbrot

benchmark…

�Emulating the stack is a serious slow

down!

Translating .Net Libraries To Parrot

Comparing Stack To Register Mappers

�More surprisingly, the Optimising

Register SRM also gave the best

translation times for the .Net class

library.

�Result is due to compilation of

generated PIR to Parrot bytecode

dominating the translation time!

Translating .Net Libraries To Parrot

Conclusions

Love virtual machines does he,

Shared libraries make his day.

And libraries for VM B,

Now work on VM A.

Translating .Net Libraries To Parrot

Bytecode Translation Works!

�As originally predicted, it’s a lot of effort

to get a working translator

�However, generated code can be

pretty good

�Got most of the instructions and

constructs being translated

�Able to translate a lot of the class

library; hand-coded bits a sticking point

Translating .Net Libraries To Parrot

The Future

�Hoping to get the translator usable for

production, but about the same amount

of work required again to do so.

�Come and join the fun – lots of low

hanging fruit still.

�Code in the Parrot repository, along

with a To Do list.

�Or drop me an email, or I’m on #parrot

Translating .Net Libraries To Parrot

Any questions?

