
Sorry, you’re

not my type

Jonathan Worthington

YAPC::EU::2006

Type

Systems

Type

Theory?!

Sorry, you’re not my type

An overview of

type systems

Sorry, you’re not my type

What Is A Type?

�TMTOWTDI (There’s More Than One

Way To Define It)

�A common definition: a type classifies

a value (e.g. 42 is an integer, “monkey”

is a string…)

�Another definition: a type defines the

representation of and set of operations

that can be performed on a value.

Sorry, you’re not my type

What Is A Type System?

�Real programs consist of terms that

compute values.

�“29 + 13”

�A type system classifies a term in a

program according to the type of

values that it will compute.

�“29 + 13” will have type “integer”

�Vary greatly between languages.

Sorry, you’re not my type

Why Type Systems Are Good

�The biggest win is that we can ensure

that our programs cannot perform

certain bad operations.

�For example, most high level

languages only allow a reference to be

used in a de-reference operations.

�Not the case in all languages; in C can

create a pointer from any integer =>

programs can segfault.

Sorry, you’re not my type

Why Type Systems Are Good

�Perl 5’s type system only allows

references to be de-referenced; you

get a runtime “type error” if you try to

de-reference an integer (with strict on).
$ cat test.pl$ cat test.pl$ cat test.pl$ cat test.pl

#!/#!/#!/#!/usrusrusrusr/bin//bin//bin//bin/perlperlperlperl

use strict;use strict;use strict;use strict;

my $bar = 0xdeadbeef;my $bar = 0xdeadbeef;my $bar = 0xdeadbeef;my $bar = 0xdeadbeef;

print $$bar;print $$bar;print $$bar;print $$bar;

$$$$ perlperlperlperl test.pltest.pltest.pltest.pl

Can't use string ("3735928559") as a SCALAR ref while Can't use string ("3735928559") as a SCALAR ref while Can't use string ("3735928559") as a SCALAR ref while Can't use string ("3735928559") as a SCALAR ref while

"strict refs" in use at test.pl line 4."strict refs" in use at test.pl line 4."strict refs" in use at test.pl line 4."strict refs" in use at test.pl line 4.

Sorry, you’re not my type

Why Type Systems Are Good

�Compare that with what C’s type

system lets you do.

�This program will produce a segfault

when you run it.

�Perl is type safe, while C is not.

intintintint main()main()main()main()

{{{{

intintintint x = 0xdeadbeef;x = 0xdeadbeef;x = 0xdeadbeef;x = 0xdeadbeef;

intintintint* p = (* p = (* p = (* p = (intintintint*)x; /**)x; /**)x; /**)x; /* intintintint becomes becomes becomes becomes intintintint pointer! */pointer! */pointer! */pointer! */

intintintint y = *p; /*y = *p; /*y = *p; /*y = *p; /* DereferenceDereferenceDereferenceDereference...KABOOM! */...KABOOM! */...KABOOM! */...KABOOM! */

return 0;return 0;return 0;return 0;

}}}}

Sorry, you’re not my type

Why Type Systems Are Good

�Types also provide optimisation hints.

� In Perl 6, you can (optionally) specify

types.

�The lowercase “int” type allows the

compiler to use a native integer to

represent the value => JITed code fast!

�Allows for more compact arrays.

mymymymy intintintint $x = 42;$x = 42;$x = 42;$x = 42;

mymymymy intintintint @array;@array;@array;@array;

Sorry, you’re not my type

A Quote From The Perl 6 Design Docs

Perl 6 has an optional type system that

helps you write safer code that performs

better. The compiler is free to infer what

type information it can from the types you

supply, but will not complain about

missing type information unless you

ask it to.

Sorry, you’re not my type

Type Systems Can Be A Pain Too

�The choice of type system greatly

affects how a language feels to work

in.

�Let’s compare writing a simple program

in Perl 5 and C# 1.0.

�The user can enter a number of

integers, followed by a blank line. The

average is then computed.

Sorry, you’re not my type

The Perl Implementation
my @values;my @values;my @values;my @values;

while (my $num = <>) {while (my $num = <>) {while (my $num = <>) {while (my $num = <>) {

chop $num;chop $num;chop $num;chop $num;

if ($num) {if ($num) {if ($num) {if ($num) {

push @values, $num;push @values, $num;push @values, $num;push @values, $num;

} else {} else {} else {} else {

last;last;last;last;

}}}}

}}}}

my $total = 0;my $total = 0;my $total = 0;my $total = 0;

foreachforeachforeachforeach my $v (@values) {my $v (@values) {my $v (@values) {my $v (@values) {

$total += $v;$total += $v;$total += $v;$total += $v;

}}}}

my $average = $total / @values;my $average = $total / @values;my $average = $total / @values;my $average = $total / @values;

print "Average: $averageprint "Average: $averageprint "Average: $averageprint "Average: $average\\\\n";n";n";n";

Sorry, you’re not my type

The C# Implementation
ArrayListArrayListArrayListArrayList values = newvalues = newvalues = newvalues = new ArrayListArrayListArrayListArrayList();();();();

boolboolboolbool finished = false;finished = false;finished = false;finished = false;

while (!finished) {while (!finished) {while (!finished) {while (!finished) {

String s = Console.String s = Console.String s = Console.String s = Console.ReadLineReadLineReadLineReadLine();();();();

if (s != "") {if (s != "") {if (s != "") {if (s != "") {

double value = Double.Parse(s);double value = Double.Parse(s);double value = Double.Parse(s);double value = Double.Parse(s);

values.Add(value);values.Add(value);values.Add(value);values.Add(value);

} else {} else {} else {} else {

finished = true;finished = true;finished = true;finished = true;

}}}}

} } } }

double total = 0;double total = 0;double total = 0;double total = 0;

for (for (for (for (intintintint i = 0; i < values.Count; i++)i = 0; i < values.Count; i++)i = 0; i < values.Count; i++)i = 0; i < values.Count; i++)

total += (double) values[i];total += (double) values[i];total += (double) values[i];total += (double) values[i];

double average = total / (double) values.Count;double average = total / (double) values.Count;double average = total / (double) values.Count;double average = total / (double) values.Count;

Console.Console.Console.Console.WriteLineWriteLineWriteLineWriteLine("Average: " + average + "("Average: " + average + "("Average: " + average + "("Average: " + average + "\\\\n");n");n");n");

Sorry, you’re not my type

Type Annotations
ArrayListArrayListArrayListArrayList values = newvalues = newvalues = newvalues = new ArrayListArrayListArrayListArrayList();();();();

boolboolboolbool finished = false;finished = false;finished = false;finished = false;

while (!finished) {while (!finished) {while (!finished) {while (!finished) {

String s = Console.String s = Console.String s = Console.String s = Console.ReadLineReadLineReadLineReadLine();();();();

if (s != "") {if (s != "") {if (s != "") {if (s != "") {

double value = Double.Parse(s);double value = Double.Parse(s);double value = Double.Parse(s);double value = Double.Parse(s);

values.Add(value);values.Add(value);values.Add(value);values.Add(value);

} else {} else {} else {} else {

finished = true;finished = true;finished = true;finished = true;

}}}}

} } } }

double total = 0;double total = 0;double total = 0;double total = 0;

for (for (for (for (intintintint i = 0; i < values.Count; i++)i = 0; i < values.Count; i++)i = 0; i < values.Count; i++)i = 0; i < values.Count; i++)

total += (double) values[i];total += (double) values[i];total += (double) values[i];total += (double) values[i];

double average = total / (double) values.Count;double average = total / (double) values.Count;double average = total / (double) values.Count;double average = total / (double) values.Count;

Console.Console.Console.Console.WriteLineWriteLineWriteLineWriteLine("Average: " + average + "("Average: " + average + "("Average: " + average + "("Average: " + average + "\\\\n");n");n");n");

Need to write

explicit type

annotations =>

more to type

Sorry, you’re not my type

Type System Not Expressive Enough

�The most annoying problem is that we

have to cast a value when removing it

from a collection.

�Type system not expressive enough for

us to indicate that the collection will

only ever contain doubles.

�C# 2.0 added generics to resolve this

=> much nicer language to work in.

total += (double) values[i];total += (double) values[i];total += (double) values[i];total += (double) values[i];

Sorry, you’re not my type

Notation

Sorry, you’re not my type

Types

�We usually specify that a term has a

type by placing a colon between the

two.

�Notation exists for more complex

types; I’ll only detail functional types.

Sorry, you’re not my type

Functional Types

�Functional types (that is, types of

functions) use an arrow notation

�The type of the arguments go to the

left of the arrow.

�The type of the return value goes to

the right of the arrow.

Sorry, you’re not my type

Type Environments

�A type environment, often written Γ

(uppercase Greek letter gamma), maps

names (of variables in languages that

have them) to types.

�For example, the following type

environment tells us the types of the

scalars $x and $b.

Sorry, you’re not my type

Type Environments

�The type environment Γ on the last

slide allows us to determine the

following typing:

�Formally we write this as follows:

�Which we read as “gamma proves that

2 * $x has type int”.

Sorry, you’re not my type

Typing Rules

�We describe a type system formally

using a group of inductive typing rules.

� Inductive means…

�The type of a term in a program is

defined in terms of its sub-terms.

�There are a set of terms that do not

break down any further, known as

base cases.

Sorry, you’re not my type

Typing Rules

�Here are some typing rules for base

cases. The line above them indicates

that they do not depend on any other

rules to determine the type.

Sorry, you’re not my type

Typing Rules

�Addition may have the following typing

rule:

�You can read this as “we can prove

that t1 + t2 has type int provided that t1
has type int and t2 has type int”.

�The conditions above the line must be

true for the what is below the line to be.

Sorry, you’re not my type

Typing Rules

�The typing rule for “if” is a little more

complex; we introduce a type variable

T:

�This specifies that the condition of the

if statement must be a boolean and the

branches of the if must have the same

type (not true of all languages!)

Sorry, you’re not my type

Terminology

Sorry, you’re not my type

Type Checking

�Given a type environment, a term and

the type that we believe the term to

have, type checking verifies that the

term does indeed have that type.

�This is the process by which C# would

decide to reject the following program:
int int int int x = 5;x = 5;x = 5;x = 5;

intintintint y = 13;y = 13;y = 13;y = 13;

string z = x + y; /* x + y doesnstring z = x + y; /* x + y doesnstring z = x + y; /* x + y doesnstring z = x + y; /* x + y doesn’’’’t have type string */t have type string */t have type string */t have type string */

Sorry, you’re not my type

Type Inference

�Given a type environment and a term,

type inference finds the type that the

term has, if it does indeed have one.

�Often seen in functional languages

(ML, Haskell).

�Computationally harder than type

checking; type inference problem is

undecidable for some type systems!

Sorry, you’re not my type

Static vs. Dynamic Typing

�The distinction being made is when

type checking takes place.

�Statically typed languages will type

check the entire program at compile

time.

�Dynamically typed languages usually

require values to carry their types

around with them and perform a check

at runtime when a value is used.

Sorry, you’re not my type

Static vs. Dynamic Typing Example

�The following program may work fine in

a dynamically typed language, but fail

to compile under a statically typed one.

�Value always an integer by the time x

is used in the add operation; static type

check can’t determine this.

x = x = x = x = ““““foofoofoofoo””””

if (complex condition that is always true)if (complex condition that is always true)if (complex condition that is always true)if (complex condition that is always true)

x = 39x = 39x = 39x = 39

y = x + 3 y = x + 3 y = x + 3 y = x + 3

Sorry, you’re not my type

Hybrid Type Systems

�We’d like the expressiveness of

dynamic typing along with the

elimination of runtime checks

achievable from static typing.

�Hybrid type systems check what they

can statically and insert dynamic

checks for what they can’t decide.

“Static when possible, dynamic

when needed.”

Sorry, you’re not my type

Duck Typing

� If two objects provide the same

interface required for an operation (for

example, the same set of methods)

then they are interchangeable.

�Works regardless of the class

inheritance hierarchy.

�A form of dynamic typing.

�Used heavily in Ruby.

Sorry, you’re not my type

Duck Typing

�Need to be careful: both “firework” and

“diagram” implement the “explode”

method, but they do different things!

Sorry, you’re not my type

Strong vs. Weak Typing

�A vague definition: “how strictly are

type rules enforced?”

�A strongly typed language (e.g. C#)

would reject the following program; a

weakly typed language (Visual Basic,

Perl) would accept it.
x = 42;x = 42;x = 42;x = 42;

y = y = y = y = ““““20202020””””

z = x + yz = x + yz = x + yz = x + y

Sorry, you’re not my type

Strong vs. Weak Typing

�Strongly typed languages generally

enforce that coercions between types

that may cause data loss (such as

string to integer) must be written

explicitly as casts.

�Weakly typed languages assume the

programmer knows what they are

doing (not always a good assumption!)

and performs a coercion implicitly.

Sorry, you’re not my type

Polymorphism

Sorry, you’re not my type

Polymorphism

�Again, TMTOWTDI (both for D =

Define and D = Do).

�One definition: polymorphism occurs

when a term or value can be classified

as having more than one type.

�Another definition: polymorphism

allows the same code to operate on

values of different types.

Sorry, you’re not my type

Polymorphism

�Many ways to achieve polymorphism.

� I will quickly look at three of them that

feature in Perl 6 in some form.

�Subclassing

�Parametric polymorphism (aka

generics and parameterized types)

�Refinement types

�See proceedings for detail++.

Sorry, you’re not my type

Subclassing

�More commonly known as inheritance.

�A key part of object oriented

programming.

�A subclass may be used in place of a

parent class because it only adds to

the behaviours and representation that

the parent class has.

�Found in the many OO languages.

Sorry, you’re not my type

Subclassing

�Perl 6 has some nicer syntax for

defining a subclass than Perl 5:

�We formalize subclassing by adding a

sub-typing rule that looks something

like this (we really need to define “isa”).

class Melon is Fruit {class Melon is Fruit {class Melon is Fruit {class Melon is Fruit {

............

}}}}

Sorry, you’re not my type

Parametric Polymorphism

�Key idea: a type can take type

parameters, just as a function takes

function parameters.

�We could define the types “integer list”,

“string list”, etc.

�Parametric polymorphism allows us to

give the list the type “α list”, where α is

a type parameter that we supply when

using the list.

Sorry, you’re not my type

Parametric Polymorphism

�For example, we could implement a

parametric List type in C# 2.0 that

looks something like this:
public class List<T>public class List<T>public class List<T>public class List<T>

{{{{

public void Add(T value)public void Add(T value)public void Add(T value)public void Add(T value)

{{{{

............

} } } }

public T Get(public T Get(public T Get(public T Get(intintintint index)index)index)index)

{{{{

............

} } } }

Sorry, you’re not my type

Parametric Polymorphism

�The type parameter is supplied when

an instance of the list class is created.

�Perl 6 provides parametric

polymorphism in an interesting way!

�A role (basically a group of methods

that are composed into a class) is

implicitly parameterized on the type of

the invocant.

List<List<List<List<intintintint> = new List<> = new List<> = new List<> = new List<intintintint>();>();>();>();

Sorry, you’re not my type

Refinement Types

�A refinement type is obtained by

adding constraints to an existing type.

�For example, the type EvenInt is a

refinement of the Int type that only

contains even integers.

� In Perl 6, EvenInt would be defined like

this:
subsetsubsetsubsetsubset EvenIntEvenIntEvenIntEvenInt ofofofof IntIntIntInt where { $^n % 2 == 0 }where { $^n % 2 == 0 }where { $^n % 2 == 0 }where { $^n % 2 == 0 }

Sorry, you’re not my type

Refinement Types

�Anonymous refinement types in Perl 6

will be very useful!

�Can use a more refined type in place of

a less refined one, providing yet

another path to polymorphic code!

sub Halve (sub Halve (sub Halve (sub Halve (IntIntIntInt $n where { $^n % 2 == 0 }) returns$n where { $^n % 2 == 0 }) returns$n where { $^n % 2 == 0 }) returns$n where { $^n % 2 == 0 }) returns IntIntIntInt

{{{{

return $n / 2;return $n / 2;return $n / 2;return $n / 2;

}}}}

Sorry, you’re not my type

Any questions?

