
Understanding Roles,

Constraints And Classes

Jonathan Worthington

French Perl Workshop 2007

Understanding Roles, Constraints And Classes

The Perl 6 Object Model

�The Perl 6 object model attempts to

improve on the Perl 5 one

�Nicer, more declarative syntax

�One way to do things, rather than the

many that appeared in Perl 5 (but you

can still do other stuff if you like)

�Roles – the Big New Thing

�Before roles, something familiar…

Understanding Roles, Constraints And Classes

Classes

Understanding Roles, Constraints And Classes

What Are Classes Used For?

� Instance Management

�Classes “create” objects

�Alternatively, you can view a class as

a kind of blueprint for how to create

an object

�Classes define both the state and

behaviour that an object has, and

relate them

Understanding Roles, Constraints And Classes

What Are Classes Used For?

�Code re-use

�We often try to design classes to do

one particular thing

�That means that, ideally, they can be

re-used to do that thing multiple

times, potentially in multiple programs

Understanding Roles, Constraints And Classes

What Are Classes Used For?

�Providing a route to polymorphism

�This means that the same code can

safely operate on values of different

types

� Inheritance relationships state that a

subclass can be used in place of any

of its parent classes, transitively

�Enables more code re-use

Understanding Roles, Constraints And Classes

Classes In Perl 6

� Introduce a class using the class

keyword

�With a block:

�Or without to declare that the rest of

the file describes the class.

class Puppy {

…

}

class Puppy;

They�called�me�

WHAT?!

They�called�me�

WHAT?!

white

They�called�me�

WHAT?!

white

4�paws

They�called�me�

WHAT?!

white

4�paws tail

Understanding Roles, Constraints And Classes

Attributes

� Introduced using the has keyword

�All attributes in Perl 6 are stored in an

opaque data type

�Hidden to code outside of the class

class Puppy {

has $name;

has $colour;

has @paws;

has $tail;

}

Understanding Roles, Constraints And Classes

Accessor Methods

�We want to allow outside access to

some of the attributes

�Writing accessor methods is boring!

�$. means it is automatically generated

class Puppy {

has $.name;

has $.colour;

has @paws;

has $tail;

}

Understanding Roles, Constraints And Classes

Mutator Methods

�We should be able to change some of

the attributes

�Use is rw to generate a mutator

method too

class Puppy {

has $.name is rw;

has $.colour;

has @paws;

has $tail;

}

w00f!

w00f!

chew($stuff)

w00f!

chew($stuff)

play_in_garden

w00f!

chew($stuff)

wag_tail

play_in_garden

Understanding Roles, Constraints And Classes

Methods

�The new method keyword is used to

introduce a method

�Parameters go in a parameter list; the

invocant is optional!

method bark() {

say “w00f!”;

}

method chew($item) {

$item.damage++;

}

Understanding Roles, Constraints And Classes

Attributes In Methods

�Attributes can be accessed with the $.

syntax, via their accessor

�To get at the actual storage location,
$colour can be used

method play_in_garden() {

$.colour = 'black';

}

method play_in_garden() {

$colour = 'black';

}

Understanding Roles, Constraints And Classes

Attributes In Methods

� If there is a conflict with a lexical
variable, you can use $!colour

�This is because all (private) attributes

inside the class really have the ! In their

name; can use it to emphasize

privateness.

method play_in_garden() {

$!colour = 'black';

}

has $!tail;

Understanding Roles, Constraints And Classes

Consuming A Class

�A default new method is generated for

you that sets attributes

�Also note that -> has become .

my $puppy = Puppy.new(

name => 'Rosey',

colour => 'white‘

);

$puppy.bark(); # w00f!

say $puppy.colour; # white

$puppy.play_in_garden();

say $puppy.colour; # black

Understanding Roles, Constraints And Classes

A Note On Instantiation

�Another common way to write the

instantiation code is this

�The .= method means “call a method

on myself and assign the result to me”

�$puppy is undefined, but we know its

class, so can call the new method

my Puppy $puppy .= new(

name => 'Rosey',

colour => 'white‘

);

Understanding Roles, Constraints And Classes

Delegation

�Sometimes, one of the attributes

contains a method that we want to

expose in the current class; we could

write a method like this:

�Use delegation instead; modify the
declaration of $tail

method wag() {

$tail.wag();

}

has $tail handles 'wag';

Understanding Roles, Constraints And Classes

Inheritance

�A puppy is really a dog, so we want to

implement a Dog class and have Puppy

inherit from it

� Inheritance is achieved using the is

keyword
class Dog {

…

}

class Puppy is Dog {

…

}

Understanding Roles, Constraints And Classes

Multiple Inheritance

�Multiple inheritance is possible too; use
multiple is statements

class Puppy is Dog is Pet {

…

}

Understanding Roles, Constraints And Classes

Roles

Understanding Roles, Constraints And Classes

In Search Of Greater Re-use

� In Perl 6, roles take on the task of re-

use, leaving classes to deal with

instance management

�We need to implement a walk method

for our Dog class

�However, we want to re-use that in the
Cat and Pony classes too

�What are our options?

Understanding Roles, Constraints And Classes

The Java, C# Answer

�There’s only single inheritance

�You can write an interface, which

specifies that a class must implement a
walk method

�Write a separate class that implements
the walk method

�You can use delegation (hand coded)

�Sucks

Understanding Roles, Constraints And Classes

The Multiple Inheritance Answer

�Write a separate class that implements
the walk method

� Inherit from it to get the method

�Feels wrong linguistically

�“A dog is a walk” – err, no

�“A dog does walk” – what we want

�Multiple inheritance has issues…

Understanding Roles, Constraints And Classes

Multiple Inheritance Issues

�The diamond inheritance problem

�Do we get two copies of

A’s state?

� If B and C both have a
walk method, which do

we choose?

� Implementing multiple inheritance is

tricky too

A

B C

D

Understanding Roles, Constraints And Classes

Mix-ins

�A mix-in is a group of one or more

methods than can not be instantiated

on their own

�We take a class and “mix them in” to it

�Essentially, these methods are added

to the methods of that class

�Write a Walk mixin with the walk

method, mix it in.

Understanding Roles, Constraints And Classes

How Mix-ins Work

�Defined in terms of single inheritance

�C with M1 and M2 mixed in is,

essentially, an anonymous subclass

M1

C

M2 M1

C

M2

Compilation

Understanding Roles, Constraints And Classes

Issues With Mix-ins

� If M1 and M2 both have methods of the

same name, which one is chosen is

dependent on the order that we mix in

�Fragile hierarchies problem again

�Further, mix-ins end up overriding a

method of that name in the class, so

you can’t decide which mix-in’s method

to actually call in the class itself

Understanding Roles, Constraints And Classes

The Heart Of The Problem

�The common theme in our problems is

the inheritance mechanism

�Need something else in addition

�We want

�To let the class be able to override

any methods coming from elsewhere

�Explicit detection and resolution of

conflicting methods

Understanding Roles, Constraints And Classes

Flattening Composition

�A role, like a mix-in, is a group of

methods

� If a class does a role, then it will have

the methods from that role, however:

� If two roles provide the same method,

it’s an error, unless the class provides

a method of that name

�Class methods override role methods

Understanding Roles, Constraints And Classes

Creating Roles

�Roles are declared using the role

keyword

�Methods declared just as in classes
role Walk {

method walk($num_steps) {

for 1..$num_steps {

.step for @paws;

}

}

}

Understanding Roles, Constraints And Classes

Composing Roles Into A Class

�Roles are composed into a class using
the does keyword

�Can compose as many roles into a

class as you want

�Conflict checking done at compile time

�Works? Not quite…

class Dog does Walk {

…

}

Understanding Roles, Constraints And Classes

Composing Roles Into A Class

�Notice this line in the walk method:

�Can state that a role “shares” an

attribute with the class it is composed
into using has without . or !

�Note: to use this currently in Pugs, you

must use:

.step for @paws;

has @paws;

.step for @!paws;

Understanding Roles, Constraints And Classes

Additional Safety

�We want to be sure that when we
compose our role, the items in @paws

will have the step method.

�Assuming the Paw class has the step

method, we can add a type annotation

to the has declaration in both the role

and the class, stating that elements of
the array must be of the class Paw.

has Paw @paws;

Understanding Roles, Constraints And Classes

Parametric Polymorphism

�Polymorphism = code can work with

values of different types

�Parametric = a type takes a parameter;

we pass a type variable whenever we

use the type

�What is the type of the invocant (self)

for a method in a role?

�That of the class we compose it into

Understanding Roles, Constraints And Classes

Parametric Polymorphism

�The types of roles are therefore

parametric

�They are parameterised on the type of

the class that we compose the role into

�Compose Walk into class Dog, the

invocant has type Dog

�Compose Walk into class Cat, the

invocant has type Cat

Understanding Roles, Constraints And Classes

Constraints

Understanding Roles, Constraints And Classes

Refinement Types

�A type classifies a value

�For example, 42 is an integer

�Therefore for each type there is a

(possibly infinite) set of values that

could be classified as that type

�Constraints are refinement types

�Take an existing type

�Restrict the values in it further

Understanding Roles, Constraints And Classes

EvenInt

�An EvenInt will be a refinement of the

Int type that can only hold even values

�Declare it using the subset keyword

�Variables with the secondary sigil ^

hold parameters that the block has

been passed; the lexicographically first

name gets the first parameter, etc.

subset EvenInt of Int

where { $^n % 2 == 0 };

Understanding Roles, Constraints And Classes

Making Walk More General

�We may want to use the Walk role for

humans too

�Humans have feet, not paws

�We’d like @paws to contain something

that has the step method, but in reality

it may contain Foot or Paw objects

Understanding Roles, Constraints And Classes

Making Walk More General

�Define a refinement type that requires
the step method (Any = any type)

�Use this in the has declaration in the

class and the role

has Walkable @paws;

my subset Walkable of Any

where { .can('step‘) };

Understanding Roles, Constraints And Classes

The End

w00f!

J'adore

Perl�6

Understanding Roles, Constraints And Classes

Questions?

Understanding Roles, Constraints And Classes

Merci!

