
Clarifying
Roles 

Jonathan Worthington
German Perl Workshop 2007



Clarifying Roles

The Perl 6 Object Model
�The Perl 6 object model attempts to 
improve on the Perl 5 one
�Nicer, more declarative syntax
�One way to do things, rather than the 
many that appeared in Perl 5 (but you 
can still do other stuff if you like)

�Roles – the subject of this talk
�Before roles, a look at classes…



Clarifying Roles

Classes In Perl 6
� Introduce a class using the class
keyword
�With a block:

�Or without to declare that the rest of 
the file describes the class.

class Puppy {
…

}

class Puppy;





����������	�
��

� �
���



����������	�
��

� �
���

� ����



����������	�
��

� �
���

� ����

����� �



����������	�
��

� �
���

� ����

����� � ����



Clarifying Roles

Attributes
� Introduced using the has keyword

�All attributes in Perl 6 are stored in an 
opaque data type

�Hidden to code outside of the class

class Puppy {
has $name;
has $colour;
has @paws;
has $tail;

}



Clarifying Roles

Accessor Methods
�We want to allow outside access to 
some of the attributes

�Writing accessor methods is boring!
�$. means it is automatically generated

class Puppy {
has $.name;
has $.colour;
has @paws;
has $tail;

}



Clarifying Roles

Mutator Methods
�We should be able to change some of 
the attributes

�Use is rw to generate a mutator
method too

class Puppy {
has $.name is rw;
has $.colour;
has @paws;
has $tail;

}





�����



�����

������������



�����

������������

�����������	��



Clarifying Roles

Methods
�The new method keyword is used to 
introduce a method

�Parameters go in a parameter list; the 
invocant is optional!

method bark() {
say “w00f!”;

}

method chew($item) {
$item.damage++;

}



Clarifying Roles

Attributes In Methods
�Attributes can be accessed with the $.
syntax, via their accessor

�To get at the actual storage location, 
$colour can be used

method play_in_garden() {
$.colour = 'black';

}

method play_in_garden() {
$colour = 'black';

}



Clarifying Roles

Consuming A Class
�A default new method is generated for 
you that sets attributes

�Also note that -> has become .
my $puppy = Puppy.new(

name => 'Rosey',
colour => 'white‘

);
$puppy.bark();           # w00f!
say $puppy.colour;       # white
$puppy.play_in_garden();
say $puppy.colour;       # black



Clarifying Roles

Inheritance
�A puppy is really a dog, so we want to 
implement a Dog class and have Puppy 
inherit from it

� Inheritance is achieved using the is
keyword

class Dog {
…

}
class Puppy is Dog {

…
}



Clarifying Roles

Multiple Inheritance
�Multiple inheritance is possible too; use 
multiple is statements

class Puppy is Dog is Pet {
…

}



Clarifying Roles

In Search Of Greater Re-use
� In Perl 6, roles take on the task of re-
use, leaving classes to deal with 
instance management

�We need to implement a walk method 
for our Dog class

�However, we want to re-use that in the 
Cat and Pony classes too

�What are our options?



Clarifying Roles

The Java, C# Answer
�There’s only single inheritance
�You can write an interface, which 
specifies that a class must implement a 
walk method

�Write a separate class that implements 
the walk method

�You can use delegation (hand coded)
�Sucks



Clarifying Roles

The Multiple Inheritance Answer
�Write a separate class that implements 
the walk method

� Inherit from it to get the method
�Feels wrong linguistically

�“A dog is a walk” – err, no
�“A dog does walk” – what we want

�Multiple inheritance has issues…



Clarifying Roles

Multiple Inheritance Issues
�The diamond inheritance problem

�Do we get two copies of
A’s state?

� If B and C both have a
walk method, which do
we choose?

� Implementing multiple inheritance is 
tricky too

A

B C

D



Clarifying Roles

Mix-ins
�A mix-in is a group of one or more 
methods than can not be instantiated 
on their own

�We take a class and “mix them in” to it
�Essentially, these methods are added 
to the methods of that class

�Write a Walk mixin with the walk
method, mix it in.



Clarifying Roles

How Mix-ins Work
�Defined in terms of single inheritance

�C with M1 and M2 mixed in is, 
essentially, an anonymous subclass

M1

C

M2 M1

C

M2

����������	



Clarifying Roles

Issues With Mix-ins
� If M1 and M2 both have methods of the 
same name, which one is chosen is 
dependent on the order that we mix in
�Fragile class hierarchies again

�Further, mix-ins end up overriding a 
method of that name in the class, so 
you can’t decide which mix-in’s method 
to actually call in the class itself



Clarifying Roles

The Heart Of The Problem
�The common theme in our problems is 
the inheritance mechanism

�Need something else in addition
�We want

�To let the class be able to override 
any methods coming from elsewhere

�Explicit detection and resolution of 
conflicting methods



Clarifying Roles

Flattening Composition
�A role, like a mix-in, is a group of 
methods

� If a class does a role, then it will have 
the methods from that role, however:
� If two roles provide the same method, 
it’s an error, unless the class provides 
a method of that name

�Class methods override role methods



Clarifying Roles

Creating Roles
�Roles are declared using the role
keyword

�Methods declared just as in classes
role Walk {

method walk($num_steps) {
for 1..$num_steps {

.step for @paws;
}

}
}



Clarifying Roles

Composing Roles Into A Class
�Roles are composed into a class using 
the does keyword

�Can compose as many roles into a 
class as you want

�Conflict checking done at compile time
�Works? Not quite…

class Dog does Walk {
…

}



Clarifying Roles

Composing Roles Into A Class
�Notice this line in the walk method:

�Can state that a role “shares” an 
attribute with the class it is composed 
into using has without . or !

�Note: to use this currently in Pugs, you 
must use:

.step for @paws;

has @paws;

.step for @!paws;



Clarifying Roles

Parametric Polymorphism
�Polymorphism = code can work with 
values of different types

�Parametric = a type takes a parameter; 
we pass a type variable whenever we 
use the type

�What is the type of the invocant (self) 
for a method in a role?
�That of the class we compose it into



Clarifying Roles

Parametric Polymorphism
�The types of roles are therefore 
parametric

�They are parameterised on the type of 
the class that we compose the role into
�Compose Walk into class Dog, the 
invocant has type Dog

�Compose Walk into class Cat, the 
invocant has type Cat



Clarifying Roles

The End



Clarifying Roles

w00f!



Clarifying Roles

Questions?


