
Perl 6: More…

Jonathan Worthington
Hannover.pm

Perl 6: More...

Perl Evolves
�Perl 6 is the forthcoming major re-
working of the Perl programming
language.

�Perl 5 is great!
�Perl 6, when it is ready, aims to be
even greater – a tall order.

�Tonight: how Perl 6 aims to provide
programmers with more Good Things.

Perl 6: More...

More Huffmanized
�Huffman Coding = Things that are used
more often should be shorter.

�Often true in natural language…
�Frequently used:

the, a, you, I, me…
�Rarely used:

antidisestablishmentarianism
(Yes, that’s an English word. We were trying
to compete with German nouns. ����)

Perl 6: More...

More Huffmanized
�How often did you write this in Perl 5?

� In Perl 6: a version of print that puts a
new line character on the end for you!

print "Whatever\n";

say "Whatever";

Perl 6: More...

More Huffmanized
�Method calling in Perl 5 used ->

� In Perl 6 we use the shorter . instead

�As a bonus, this syntax is more
consistent with other OO languages

�Note that concatenation is now ~

$monkey->eat($banana);

$monkey.eat($banana);

Perl 6: More...

More Huffmanized
�How often did you write this in Perl 5?

� In Perl 6: junctions!

�Note that the parentheses around the
condition are no longer needed, either.

if ($a == 5 || $a == 6 || $a == 7) {
Do something.

}

if $a == 5 | 6 | 7 {
Do something.

}

Perl 6: More...

More Huffmanized
�How often did you write this in Perl 5?

� In Perl 6: junctions can be constructed
from arrays too

my $contains_five = 0;
for (@a) {

$contains_five = 1 if $_ == 5;
}
if ($contains_five) {
}

if any(@a) == 5 {
}

Perl 6: More...

More Huffmanized
�How often did you write this in Perl 5?

� In Perl 6: the reduction meta-operator

�Many other uses…

my $total = 0;
for (@values) {

$total += $_;
}

my $total = [+] @values;

my $factorial = [*] 1..$x;
if [<=] @x { # If @x is sorted ascending
}

Perl 6: More...

More Orthogonal
�Perl 6 attempts to avoid special cases
somewhat by providing more general
mechanisms

�Consider ���� in Perl 5
��� and �� magically exist
�The real problem: we need an easy
and concise way to give a block
parameters and get access to them

Perl 6: More...

More Orthogonal
� In Perl 6, we have secondary sigils
�$^whatever is a block parameter
�All block parameter referred to within a
block are taken and their names are
sorted lexicographically

�The parameters are bound to these
variables in lexicographic order

Perl 6: More...

More Orthogonal
�This is how you would sort a list of
strings by their length in characters

�However, this more general mechanism
can be used anywhere you want.

my $code = {
say $^x - $^y;

}
$code(2,1); # 1
$code(5,7); # -2

@words .= sort { $^a.chars <=> $^b.chars };

Perl 6: More...

More Declarative
�Declarative = just say what you want,
not how to do it.

� In Perl 5, handling of parameters
passed to subs could be quite a bit of
work.

�Perl 6 provides a more declarative
syntax.

�The old way is still available.

Perl 6: More...

More Declarative
�First example: a sub that takes three
scalar parameters, one optional.

�Perl 5:

�Perl 6:

sub substr {
die unless @_ == 2 || @_ == 3;
my ($string, $offset, $length) = @_;

}

sub substr($string, $offset, $length?) {
}

Perl 6: More...

More Declarative
�Second example: a variable argument
sub with a fixed first parameter.

�Perl 5:

�Perl 6:

sub all_under {
die unless @_ > 1;
my ($test, @values) = @_;

}

sub all_under($test, *@values) {
}

Perl 6: More...

More Object Oriented
�You can treat everything as an object if
you want to.

�But you don't have to.

�File I/O is more OO in Perl 6.

"Hello, world!".say;
$len = $string.chars; # Length in characters

say "Hello, world!";
$len = chars($string);

my $fh = open ">> quotes.txt";
$fh.say("Vacuums suck!");

Perl 6: More...

More Object Oriented
�Classes with methods now clearly
separated from modules with subs.

�Notice the new, neater syntax for
inheritance

class Englishman is Human {
method drink_tea($cups) {

for 1..$cups {
say "I say, that was spiffing!";

}
}

}

Perl 6: More...

More Object Oriented
�Attributes are now all private; accessor
and mutator methods can be generated
for you on request.

�Method calls now interpolate

class Englishman is Human {
has $.name; # Accessor
has $.ale is rw; # Accessor and mutator
has @political_views; # Private

}

say "$jeeves.name thinks that Tony Blair " ~
"is $jeeves.get_view('Blair').";

Perl 6: More...

More CPU And Memory Efficient
�You can optionally annotate variables
with types.

�Using the lower-case int type tells the
Perl 6 compiler that it can use a native
integer to store the value.

�Can be very fast with a JIT compiler.
�Also more compact in memory.

my int $a = 42;
my @list of int = 1..10000;

Perl 6: More...

More Lazy
�Lazy evaluation = on demand.
�We can create infinite lists!

�The computation required to produce
an element of the list will only be
performed when it is accessed.

�More advanced things are possible:

my @naturals = 0...; # Or 0..Inf

my @evens = map { 2 * $^n } @naturals;

Perl 6: More...

More Parallelizable
�Parallelism matters!

�Need to occupy multiple CPUs to
increase performance.

�The leading edge processors of today
have already 2-4 cores.

�The next generation: even more!
�Most people find parallelism hard

�Need the language to help us

Perl 6: More...

More Parallelizable
�Hyper-operators let you perform
operations element-wise over an array

�More than just a short hand for loops
�You are stating that you do not care
about the order that the operation is
performed on elements, and permitting
it to be performed in parallel.

@sums = @a >>+<< @b;
@squares = @a >>**<< 2;
@results = @a>>.some_method();

Perl 6: More...

More Parallelizable
�Atomic operations are possible without
you having to declare when to take out
locks

�Under the hood: software transactional
memory

�Helps avoid deadlock

atomic {
$account1 -= $transfer_amount;
$account2 += $transfer_amount;

};

Perl 6: More...

More huffmanized
More orthogonal
More declarative

More object oriented
More CPU and memory efficient

More lazy
More parallelizable

More…

Perl 6: More...

More huffmanized
More orthogonal
More declarative

More object oriented
More CPU and memory efficient

More lazy
More parallelizable

More productive!

Perl 6: More...

More huffmanized
More orthogonal
More declarative

More object oriented
More CPU and memory efficient

More lazy
More parallelizable

More fun!

Perl 6: More...

Danke!

Perl 6: More...

Questions?

