Bytecode Translation:
From The .Net CLR To Parrot

Jonathan Worthington
OSCON 2007

Translating .Net Libraries To Parrot

The Problem

Love virtual machines did he,
Shared libraries made his day.
But libraries for VM B,
Wouldn’t work on VM A.

Translating .Net Libraries To Parrot

Virtual Machines Are Good

« Abstract away the operating system
and hardware, easing development
and deployment

« Provide higher level constructs than
real hardware, so easier to compile to

« Help to enable inter-operability
between languages

. Safety and security benefits

Translating .Net Libraries To Parrot

Shared Libraries Are Good

«More generally, code re-use in general
IS good

o For libraries compiled to native
(machine) code, calling into them is
relatively easy...

«Define a common calling conventions
to pass the arguments

«Do a jJump instruction to library code

Translating .Net Libraries To Parrot

The Problem

« What about libraries written in
languages that run on a VM?

. Fine if they both compile down to (or
libraries are available for) both VMs.

.If not there’s a problem: different VMs
have different instruction sets, provide
different levels of support for HLL
constructs, etc.

Translating .Net Libraries To Parrot

Possible Solution #1

« Modify the compiler for the HLL to emit
code for another VM.

.Can lead to high quality output code.

xNeed source of HLL compiler and the
library — maybe not available!

=|f there are libraries in multiple HLLs,
we have multiple compilers to modify.

*Need to worry about HLL semantics.

Translating .Net Libraries To Parrot

Possible Solution #2
« Embed one VM inside another.

<A quick way to something that
basically works.

+No Issues matching semantics.

xMaking calls into the other VM
transparent means duplicating state.

*Have memory footprint of both VMs
xPerformance issues over boundary

Translating .Net Libraries To Parrot

Possible Solution #3

o Iranslate bytecode for VM A to
bytecode for VM B.

-Independent of the HLL

«Translating a small(ish) number of
well defined instructions

VM B’s “native” code => performance

= A lot of initial iImplementation effort to
get something usable.

Translating .Net Libraries To Parrot

The Chosen Solution

. Bytecode translation appears to make
the best trade-offs, so | chose to
iInvestigate that approach in detall.

«Chose to translate .Net bytecode to run
on the Parrot VM.

Net DLL or EXEFile .~
v

‘ Bvtecode Translation

y
/ Parrot Bytecode File //

Translating .Net Libraries To Parrot

Architecture

So a translator he conceived;
Designed so it would be,
Declarative and pluggable,
To manage complexity.

Translating .Net Libraries To Parrot

The .Net Common Language Runtime
. Stack based

« Polymorphic instructions
«Designed to be JIT-compiled
« An open standard

A range of HLL features: arrays, value
types, classes, fields, methods, single
iInheritance, interfaces, exceptions,
more...

Translating .Net Libraries To Parrot

Parrot
- Aimed primarily at dynamic languages
« Register based, four types of register
. Instructions non-polymorphic

«Designed to be fast to interpret as well
as JIT

«One In-progress implementation

« Aims to support wide range of HLL
behaviour but retain interoperabillity

Translating .Net Libraries To Parrot

Issues with the translation

«Parrot is a register machine, while .Net
IS a stack machine.

« .Net stores in declarative metadata a
lot of what Parrot does procedurally

«Set of tables listing classes, fields,
methods, signatures, etc.

«Some .Net instructions/constructs have
no direct Parrot equivalent.

Translating .Net Libraries To Parrot

Some side-issues

« Code to translate an instruction will
often be pretty similar. Repetitive code
IS bad.

« Multiple solutions to mapping stack
code to register code; want to have
simple one at first, the implement and
benchmark advanced ones later.

. Want reasonably high performance
from the translator.

Translating .Net Libraries To Parrot

Architecture
— .~ .NetDLLorEXEFile .-
APMCis| - * B
a C-based Metadata Translator
data |
structure | ™S PMCs g Parrof's
accessiple } Intermediate
to VM- Instruction Translator Lanquage:
level code ! Juage;
- PIR e
!) compiled
FIR Com piler down to
! bytecode

Parrot Bytecode

Translating .Net Libraries To Parrot

The Metadata Translator

o Partly written in C (reading the .Net
assembly), partly in PIR (code
generation).

« C->PIR interface through PMCs (Parrot
types implemented in C).

. Can generate class and method stubs
with the metadata translator; instruction
translator fills in the method bodies
with the translated code.

Translating .Net Libraries To Parrot

The Instruction Translator
«Over 200 .Net instructions

«Much is common in translating
instructions => don't want to maintain
duplicate code or make the same
mistakes again and again

« Stack to register mapping algorithm
somewhat cross-cuts the process, and
we want to be able to drop alternatives
I

Translating .Net Libraries To Parrot

Declarative Instruction Translation

. Create a declarative “mini-language” to
specify how to translate instructions.

Net instruction name and number.
[add] }/Type of instruction (branch, load, ...)
\code = 58 /

class = op Number of items it takes from/puts

332h==21 }/onto the stack

vinstruction = ${DESTO} = ${STACKO} + ${STACK1}
i:typeinfo = typeinfo_bin_num_op(${STYPES}, ${DTYPES})]v>

The Parrot instruction to generate. Type transform

Translating .Net Libraries To Parrot

Pluggable Stack To Register Mapping

«Need to turn stack code into register
code.

.ldeally, want a translation like this:

1dc.14 30
1dc.14 12
add
stloc.1

!]

add locall, 30, 12

Translating .Net Libraries To Parrot

Pluggable Stack To Register Mapping
. Want to do something easy first.

.Use a Parrot array PMC to emulate
the stack => slow, but simple.

« Pop stuff off the stack into registers
to do operations on them.

push s, 30
1dc.14 30 push s, 12
l1dc.i4 12 $10 = pop s
add - $I1 = pop s
stloc.1 $12 = add $10, $11

push s, $I2

Translating .Net Libraries To Parrot

Pluggable Stack To Register Mapping

.Later, want to implement something
more complex.

« S0 Make stack to register mapping
pluggable.

. Define set of hooks (pre_branch,
post branch, pre op, post op, etc.)

« Stack to register mapping module
Implements these.

Translating .Net Libraries To Parrot

Stack Type State Tracking

« When data is placed on the stack, we
always know its type (integer, float,
object reference, etc).

. But “add” instruction (for example)
could be operating on integers or floats
=> need to map stack locations to
correct Parrot register types.

o [rack the types of values on the stack
using simple data flow analysis.

Translating .Net Libraries To Parrot

Generating The Instruction Translator
A Perl script takes...

« | he declarative instruction
translations file

o A stack to register mapping module
(written in Perl, generates PIR)

« Produces a PIR source file
iImplementing the instruction translator.

« Generating code that generates code!

Translating .Net Libraries To Parrot

Implementation

For weeks he toiled day and night,
Fuelled by chocolate and caffeine,
And wove his dreams into code:
A translator like none e’er seen!

Translating .Net Libraries To Parrot

Start With The Metadata Translator

. | he metadata translator was partially
implemented first (since the instruction
translated depended on it).

« Generated class and method stubs.

«Method stubs did parameter fetching
and local variable declaration.

« Stress tested with large DLLs from the
Net class library.

Translating .Net Libraries To Parrot

Building Translation Architecture

 [he next step was to implement the
translator and a trivial stack to register
mapping algorithm.

. Initial instructions were implemented
quickly and easily...

« Arithmetic and logical operations,
load and store of local variables and
parameters, branch instructions

Translating .Net Libraries To Parrot

Load And Stores

« Metadata translator declares locals to
have the names "local0", "local1", ...

.Use ${LOADREG]} to indicate the value
IS already Iin a register => hint to SRM

[1dT1oc.0]

code = 06

class = load

pop = 0

push = 1

pir = ${LOADREG} = "localO"

typeinfo = ${LOADTYPE} = ${LTYPES}[O]

Translating .Net Libraries To Parrot

Branches

+Emit a label [brl
code = 38

before each class = branch
translated arguments = 1nt32

pir = <<PIR

instruction of ${ITEMPO} = ${NEXTPC} + ${ARGO}
${STEMPO} = ${ITEMPO}

the form ${INS} = concat "goto LAB"
${INS} = concat ${STEMPO}

LABn5 Where ${INS} = concat "\n"

nis the PIR

position in the bytecode.

Translating .Net Libraries To Parrot

Implementing More Complex Features
- Will look today at...

« Checked arithmetic

«Managed pointers
« Better stack to register mapping

 Other things in the dissertation on my
site (http://www.jnthn.net/).

Translating .Net Libraries To Parrot

Checked Arithmetic

«Does arithmetic and throws an
exception in the event of an overflow.

« Parrot does not have any instructions
to do this.

« HOwever, it supports dynamic
instruction libraries...

« Can extend the instruction set
dynamically by language.

Translating .Net Libraries To Parrot

Checked Arithmetic

. Write the opcode in a .ops file; Parrot
build tools do the rest.

inline op net_add_ovf(out INT, in INT, in INT) :base_core {
if (CHECK_ADD_OVERFLOW($2, $3))
{
opcode_t *ret = expr NEXTQ);
opcode_t *dest = dotnet_OverflowException(interp, ret);
goto ADDRESS(dest);

}
else
{
$1 = $2 + $3;
goto NEXT(Q);
}

Translating .Net Libraries To Parrot

Checked Arithmetic

«Need to emit code to load the dynamic
Instruction library

. [hen the translation rule just uses the
dynamic instruction

[add.ovf]

code = D6

class = op

pop = 2

push = 1

instruction = net_add_ovf ${DESTO0}, ${STACKO}, ${STACK1l}
typeinfo = typeinfo_bin_num_op(${STYPES}, ${DTYPES})

Translating .Net Libraries To Parrot

Managed Pointers

. Allow you to take a pointer into the
stack, to an element of an array or a
field of an object

. Can modify the data through the
pointer.

.In Parrot terms, corresponds to taking
pointers to registers and into PMC data
— both are unsupported and dangerous
to the VM's memory safety!

Translating .Net Libraries To Parrot

Managed Pointers

. Implemented a custom PMC to
represent a managed pointer.

o FOr pointers into arrays and object
fields, stored reference to array or
object PMC and the array index or
field name => encapsulation not
broken; will work with any array.

. I ell garbage collector about array or
object we're referencing => safe.

Translating .Net Libraries To Parrot

Managed Pointers

«Managed pointers to registers — store a
pointer to a Parrot context (holding
register frame) and the register type
and number.

. Safety problem — what if register frame
goes away?

«Needed to add call-back mechanism
to Parrot so pointer could be
invalidated when register frame was.

Translating .Net Libraries To Parrot

A More Advanced SRM

. Wanted to generate better register
machine code.

A better way: map each stack location
to a register.

7 m,__
I/ £ :
,f"'/lr['f 1 | T N
Rg o ! .I !
/| i ——
r},.-* f |
et | s il N
Ohy » l
4 P

I

0 l

Translating .Net Libraries To Parrot

A More Advanced SRM

. Means that we don’'t need to emulate
the stack — much better performance.

« Real register code, so the optimizer
can improve Iit.

But still lots of needless data copying...

Tdc.i4 30 $10 = 30
1dc.14 12 $11 = 12
add $10 = add $10, $11

stloc.1 Tocall = $10

Translating .Net Libraries To Parrot

A More Advanced SRM

.ldea: do loads of constants, local
variables and parameters lazily.

. Instead of emitting a register copy,
store the name of the source register.

« Emit that directly into instruction that

uses It.
1dc.i4 30

1dc.i4 12 $10 = add 30, 12
add locall = $10

stloc.1

Translating .Net Libraries To Parrot

Evaluation

It passed all the regression tests,
Such beautiful code it made.
Class libraries were thrown at it,
And class upon class it slayed.

Translating .Net Libraries To Parrot

What Can Be Translated?
« 197 out of 213 instructions (over 92%)

.Local variables, arithmetic and logical
operations, comparison and branching
iInstructions

. Calling methods, parameter passing
«Arrays

«Managed pointers

« EXxceptions (try, catch, finally blocks)

Translating .Net Libraries To Parrot

What Can Be Translated?
- Object Oriented Features

.Classes, abstract classes and
Interfaces

o INheritance
« Static/instance fields and methods
o INstantiation, constructors

« And various other odds and ends!

« Regression tests for each of these.

Translating .Net Libraries To Parrot

A More Realistic Test

« Supply libraries from the Mono
implementation of the .Net class library
to the translator

«See how many classes it can translate
from each of the libraries

« Results: 4548 out of 5881 classes were
translated (about 77%) ©

o (Not accounting for dependencies ®)

Translating .Net Libraries To Parrot

A More Realistic Test

« What stops us translating 100% of the
Net class library?

Reason Count | Percentage
Unimplemented instruction 710 53%
Unimplemented built-in method | 260 20%
Unimplemented construct 193 147
Translator fault 171 13%

A big missing feature Is reflection.

«Also need to hand-code 100s of
methods built into the .Net VM — a long
job.

Translating .Net Libraries To Parrot

Comparing Stack To Reqister Mappers

. The Optimising Register SRM gave the
best performing output in a Mandelbrot

benchmark.

SHEM

E"l fg E"g t.-;l. "!LE-

Stack
Hegister

OptRegister

315.4 316.1 316.6 316.4 315.2

21.30 21.25 21.31 21.28 21.28) .

12.02 12.03 12.00 12.02 12.02

« Emulating the stack with an array is a
serious slow down (due to lots of vtable
method calls)

Translating .Net Libraries To Parrot

Comparing Stack To Reqister Mappers
« Perhaps surprisingly, the Optimising
Register SRM also gave the best
translation times for the .Net class

library.
SRI\I '|!"1 tz 3"3 ?!l-d. 'f"E. tuterage
Stack 267.5 267.4 267.1 267.3 267.1| 267.3
Register 2289 2294 2299 2288 2286 229.1
OptRegister | 220.0 2200 2199 2198 2200/ 219.9

- Result is due to compilation of
generated PIR to Parrot bytecode
dominating the translation time!

Translating .Net Libraries To Parrot

Comparison with a .Net VM

. Mandelbrot again, so not real world
code => don't read much into this.

.1;||'-Illr.l['E"l t: fz fd. fE tu-:-;er&ge
Mono | 2.172 2140 2.141 2125 2.156 | 2.147
Parrot | 12.02 12.03 12.00 12.02 12.02| 12.02

«Note the .Net VM has to load the entire
Net class library => Parrot not doing
so yet, so unrealistic start-up time.

. Parrot disadvantaged - .Net is using
JIT but Parrot JIT crashed on the code!

Translating .Net Libraries To Parrot

Conclusions

Love virtual machines does he,
Shared libraries make his day.
And libraries for VM B,
Now work on VM A.

Translating .Net Libraries To Parrot

Bytecode Translation Works!

«As originally predicted, it's a lot of effort
to get a working translator

« HOwever, generated code can be
pretty good

« Got most of the instructions and
constructs being translated

« Able to translate a lot of the class
library; hand-coded bits a sticking point

Translating .Net Libraries To Parrot

Code Less, But Smarter

. Generating the translator was a good
thing!

o Input: 3000 line instruction
translations file, few hundred lines
per SRM mapper, 1000-ish line script
to generate the translator.

« Output: up to 22,000 lines of PIR that
you'd really not want to maintain by
hand — and it runs fast!

Translating .Net Libraries To Parrot

The Future

« HoOping to get the translator usable for
production, but about the same amount
of work required again to do so.

«Come and join the fun — lots of low
hanging fruit still.

. Code in the Parrot repository, along
with a To Do list.

- Or drop me an email: [nthn@jnthn.net

Translating .Net Libraries To Parrot

Any gquestions?

