
Version Control With
Subversion

Jonathan Worthington
Scarborough Linux User Group

Version Control With Subversion

Happy New
Year!

Version Control With Subversion

My new year’s
resolution:

prepare my talks
well in advance!

Version Control With Subversion

I went to
EuroDisney for

New Years.

Version Control With Subversion

Cold low-hanging cloud

Big
queue

Version Control With Subversion

I got back last
night…and

remembered
something…

Version Control With Subversion

I’m giving a talk
at SLUG

tomorrow!

Version Control With Subversion

Tonight’s
topic…

Version Control With Subversion

Not about how
much Perl rules.

(You know that already.)

Version Control With Subversion

Not about virtual
machines.
(You like them. They’re your friends.)

Version Control With Subversion

Version
Control

(Sounds boring, huh?)

Version Control With Subversion

What Does Version Control Do?
�Enables one or more people to work on
the same bunch of files (for example,
the source code for a program)…
�Safely – if Mickey makes a change to
a file, then Pluto (who doesn’t know
about the latest change) makes an
incompatible change, the VC system
will flag this up and require that the
conflict is resolved.

Version Control With Subversion

What Does Version Control Do?
�Enables one or more people to work on
the same bunch of files (for example,
the source code for a program)…
�Securely – if Goofy is given the
ability to make changes to the files
but either accidentally or maliciously
makes a mess of them, it is possible
to go back to an earlier version of the
files to undo the damage

Version Control With Subversion

What Does Version Control Do?
�Enables one or more people to work on
the same bunch of files (for example,
the source code for a program)…
�Visibly – if Minnie wants to see what
Mickey, Pluto and Goofy have been
doing, she can review all the changes
that have been made to the files

Version Control With Subversion

For Little And Large
�Every large software project will use
version control

�Open source projects do, and they
usually make the files and change logs
publicly accessible

�However, also good if there is only you
developing; get a full history of what
you did and the ability to roll back
changes that were problematic

Version Control With Subversion

Which Version Control System?
�Tens, maybe hundreds of version
control systems exist

�Some are proprietary, some are open
source

�Some work only in the shell, some are
GUI based, some provide you with a
choice of both

�A few different philosophies…

Version Control With Subversion

Exclusive vs. Concurrent
�Exclusive Locking

�Only one person can ever be editing
a file at a time

�Concurrent Development
�Allow multiple people to change the
same file at the same time

�Merge compatible changes, make the
user deal with incompatible ones

Version Control With Subversion

File vs. Global Version Number
� Individual File Versioning

�Every file has a version number of its
own

�A change that touches many files
increments each file’s version number

�Global Versioning
�One version number for all files; a set
of related changes increments it

Version Control With Subversion

Subversion

Version Control With Subversion

Subversion (aka SVN)
�Open Source
�Currently popular – many projects
moved from CVS to SVN

�Runs on Linux, the BSDs, Windows,
OSX, your dog…

�Concurrent versioning (like CVS)
�Global version number (CVS was
version number per file)

Version Control With Subversion

Terminology
�Repository

�The place where the latest copy of
the files along with all of their history
is stored

�Revision
�A particular version of the files or a
particular file

Version Control With Subversion

Terminology
�Check Out

�Get a copy of all the files in the
repository and store them on your
computer

�Update
�Update the copy of the files on your
computer to the latest revision in the
repository

Version Control With Subversion

Terminology
�Check In / Commit

�Put the latest changes that you have
made to your local copy into the
repository

�Tries to automatically merge changes
if needed and if it’s safe to do so

�Check in is usually restricted to those
who are trusted

Version Control With Subversion

svn
�The command line client for Subversion
�Check out files using the co command;
first argument is the URL of the
repository, the second is the folder to
place our local copy in

�Update using the up command

svn co https://svn.perl.org/parrot/trunk
parrot

svn up

Version Control With Subversion

svn
� If we make changes, we commit them
using the ci command (check in).

� It’s good practice to specify a message
explaining your change – make it
descriptive

�Try and commit one particular change
or related set of changes at a time

svn ci –m "Fixed the DrinkBeer method to not
crash if whisky is passed instead."

Version Control With Subversion

svn
� If you want to add or remove a file, use
the add and rm commands

�To rename or move a file use the mv
command

�Note that you must always commit after
making these changes to make them in
the repository

svn add Whisky.pm
svn ci –m "Implement whisky drinking."

Version Control With Subversion

Creating Your
Own Repository

Version Control With Subversion

svnadmin and svnserve
�svnadmin

�Command line tool for creating and
administrating repositories

�svnserve
�Server that speaks the SVN protocol
�You can also run SVN over HTTP,
but we won’t cover that today.
(Because I don’t know how you do it, and can’t be bothered to look it up, and hey, I
ain’t doing everything for you. Unless you pay me. �)

Version Control With Subversion

Creating Your Repository
� I tend to create an svn user and run
svnserve as that user, placing the
repository files in the home directory

�Here’s how we create a repository
called example

[jnthn ~]$ su -l svn
Password: *************
[svn ~]$ svnadmin create /home/svn/example

Version Control With Subversion

Access Control
�By default a repository has anonymous
read and authenticated write access

�To change this, edit the configuration
file

�Change anon-access and auth-
access

[svn ~]$ vi example/conf/svnserve.conf

anon-access = none # default was read
auth-access = write # allows read too :-)

Version Control With Subversion

Authentication
�The simplest way is to have a
password file

� In svnserve.conf, uncomment the
password-db line

�Then edit the conf/passwd file
password-db = passwd

[users] # realm
mickey = iluvminnieohsomadly # user = pass
minnie = mickeyblowsmymind # user = pass

Version Control With Subversion

Start The Server!
�Use the -d switch to run it in daemon
mode (so it lives on when we exit).

�Use the -r switch to specify the root of
the repositories (in my setup, the svn
home directory)

[svn ~]$ svnserve -d -r /home/svn
[svn@jnthn ~]$ ps –e | grep [s]vnserve
22304 ? 00:00:00 svnserve
[svn ~]$ exit

Version Control With Subversion

Set Up The Repository
�We need to create an initial directory
structure for our repository

�Good idea to have a trunk directory
that you put everything in (for reasons
beyond tonight’s talk)

[jnthn ~]$ mkdir import
[jnthn ~]$ mkdir import/trunk
[jnthn ~]$ mkdir import/trunk/src
[jnthn ~]$ mkdir import/trunk/docs
[jnthn ~]$ vi import/trunk/README

Version Control With Subversion

Set Up The Repository
�Then use the import command to add
these files as the first revision

� It will request the username and
password (if it gets the user wrong first
time, just press enter at the password
prompt and it will prompt you for the
user).

svn import import/* svn://localhost:/example
-m “Initial import."

Version Control With Subversion

Use The Repository
�You don’t need your initial structure any
more – note it is not a working copy!

�You need to check out a working copy

[jnthn ~]$ rm -rf import

[jnthn ~]$ svn co svn://localhost:/example
example

A example/src
A example/docs
Checked out revision 1.

Version Control With Subversion

Use The Repository
�We can now add files to the repository
and check them in

[jnthn ~]$ cd example
[jnthn example]$ echo 'Hello, world!' > hi
[jnthn example]$ svn add hi
A hi
[jnthn example]$ svn ci -m "Hello message.“
Adding hi
Transmitting file data .
Committed revision 2.

Version Control With Subversion

…and they all
lived happily

ever after.

Version Control With Subversion

The End.

Version Control With Subversion

Questions?

