
Deploying And
Supporting Perl 6

Jonathan Worthington
UKUUG Spring 2007 Conference

Deploying And
Supporting Perl 6

Jonathan Worthington
UKUUG Spring 2007 Conference

Deploying And Supporting Perl 6

Overview
�Yesterday: the Perl 6 language
�Today:

�What is Perl 6?
�Perl 6 implementations
�Perl 5 to Perl 6 migration
�Modules in Perl 6
�CPAN6

Deploying And Supporting Perl 6

What is Perl 6?
�Perl 5 = implementation + test suite

�There was no official language
specification

�Only the one implementation
�Perl 6 = specification + test suite

�Language specification (informal)
�Test suite
�Many implementations possible

Deploying And Supporting Perl 6

Implementations

Deploying And Supporting Perl 6

Pugs
�Started out as an implementation of
Perl 6 in Haskell

�Provides fast feedback to the language
designers

�Provides a Perl 6 implementation for
people to play with

�Being used to develop and run the Perl
6 test suite

Deploying And Supporting Perl 6

Pugs
�Pugs has spawned many interesting
side-projects
�Compiling Perl 6 down to JavaScript
=> run in the browser

�6 on 5 => Run Perl 6 on Perl 5
�Various Perl 5 modules that provide
Perl 6 semantics

�v6 – Perl 6 in Perl 5

Deploying And Supporting Perl 6

Parrot
�A project to implement a virtual
machine for dynamic languages
�Similar to the JVM and the .NET CLR
�However, these VMs focussed on
static languages

�Started at the same time as the Perl 6
specification

�Separation of runtime and language

Deploying And Supporting Perl 6

Parrot
�Designed to run more than just Perl 6
�Today implementations are underway
for...
�Tcl
�PHP
�Ruby
�Python
�Many more…

Deploying And Supporting Perl 6

Parrot
�Aims to run Perl 6 programs fast!

�Compile Perl 6 to bytecode => don’t
have to parse the source every time

�JIT compiler => potential for high
performance code (close to C)

�So hopefully, less Perl extensions need
to be written in C to get performance

�Written in Perl = no C to compile �

Deploying And Supporting Perl 6

Parrot
�Lower memory footprint

�Bytecode files are mmap’d on
platforms that support it

�Just one copy of a bytecode file in
memory, shared by Parrot instances

�So even if the compiler is implemented
in Perl 6 and compiled to Parrot
bytecode, it’s still shared

Deploying And Supporting Perl 6

Parrot
�Native Calling Interface

�You can write Parrot programs that
call into C libraries

�Pure Parrot bytecode – no C compiler
needed

�Further decreases the number of C
extensions needed in Parrot and thus
Perl 6

Deploying And Supporting Perl 6

Parrot
�Parrot is written in C

�A C compiler is available on pretty
much any platform => portability

�Take advantage of platform specific
performance advantages when
available, but with a fallback
�JIT is highly CPU specific => fallback
to interpreter – still reasonably fast

Deploying And Supporting Perl 6

The Standard Grammar
�Grammar = formal definition of the
syntax of a language

�The Perl 6 standard grammar is nearly
complete
�Being defined in the Perl 6 grammar
language itself!

�Pugs and Parrot implementations will
both use it to parse Perl 6 soon

Deploying And Supporting Perl 6

What I Expect You’ll Be Deploying
�No official implementation, just an
official specification, test suite and
grammar

�However, the Parrot implementation is
what you will most likely be deploying
�Performance
�Portability

Deploying And Supporting Perl 6

Migration

Deploying And Supporting Perl 6

The Problems
�Perl 6 is not source-code backward
compatible to Perl 5
�A program that is valid Perl 5 usually
won’t be valid Perl 6

�Massive deployed base of Perl 5 code
that needs to keep running
� Including CPAN

�Need to gradually introduce Perl 6

Deploying And Supporting Perl 6

Using Perl 5 Modules In Perl 6
�You can use Perl 5 modules in Perl 6

�Means that the current CPAN remains
usable in Perl 6

�You can start introducing Perl 6 into a
Perl 5 environment for new things,
without having to re-write everything

use perl5:DBI;
use perl5:My::Fave::Module;

Deploying And Supporting Perl 6

Using Perl 5 Modules In Perl 6
�This is implemented in Pugs today
�Note that it requires embedding a Perl
5 interpreter

�Bridge between them maps Perl 5
objects into Perl 6 space and vice
versa.

Deploying And Supporting Perl 6

The Perl 5 to Perl 6 Source Translator
�The current Perl 5 parser is the only
thing that can really parse Perl 5

�Modified to optionally keep hold of all
the things it used to throw away –
comments, POD, etc.

�Generates an XML representation of a
Perl 5 program – enough to reproduce
the original program with comments,
etc.

Deploying And Supporting Perl 6

The Perl 5 to Perl 6 Source Translator
�For testing purposes, a printer was
implemented to turn this XML back into
Perl 5

�Now we can translate Perl 5 to Perl 5 �
�This is being modified to generate Perl
6 instead
�Was worked on as a Google Summer
of Code project

Deploying And Supporting Perl 6

Recognizing Perl 5
�The Perl executable needs some way
of knowing if it’s being fed Perl 5 or Perl
6

�Every Perl 5 module starts with a
package directive

�This isn’t valid Perl 6 syntax => module
identified as Perl 5; similarly, module
and class are not valid in Perl 5

package My::Business::Logic;

Deploying And Supporting Perl 6

Module Naming

Deploying And Supporting Perl 6

Long Module Names
�Every Perl 6 module and class that is
placed on CPAN or into some other
archive will be required to declare its
long name

� Includes the name itself and…
�A version number
�A URI identifying the publishing
author or authority

Deploying And Supporting Perl 6

Declaring Long Module Names
�Examples

�Within the class itself, the short name is
declared as an alias to the long name

Full syntax: specify as adverbs
class My::Thing:ver<2.5.2>:auth<CPAN:FRED>;
class Cat:ver<1.0.2>:auth<mailto:c@tz.com>;

The shorter but equivalent syntax
class My::Thing:<2.5.2 CPAN:FRED>;
class Cat:<1.0.2 mailto:c@tz.com>;

Deploying And Supporting Perl 6

Using Modules
� If you do not care what version or
author, a straightforward use works

�Alternatively, can require a particular
version, or at least a certain version, or
that its from a particular author(ity)

use My::Thing;
use My::Thing:ver(Any):auth(Any); # Same

use My::Thing:ver<2.5.2>; # Only 2.5.2
use My::Thing:ver(1.5..*); # 1.5 or later
use My::Thing:auth<CPAN:FRED>; # by FRED

Deploying And Supporting Perl 6

Advantages
�The long names of the modules are
what they are stored under

�Multiple versions of modules from
different authorities can co-exist on a
single Perl installation

� Ideally, modules would not change their
interface in later versions – but they do!

�Now there's a better way to deal with it

Deploying And Supporting Perl 6

CPAN6

Deploying And Supporting Perl 6

Why CPAN6?
�CPAN has served us very well for ten
years and will continue to do so for
years to come

�Perl 6 and Parrot bring new needs
�May have modules in many
languages on CPAN, not just Perl 6

�Need to keep older versions around,
plus versions by different authors

Deploying And Supporting Perl 6

Why CPAN6?
�Enterprises have their needs too

�Want to know releases of key
modules are trusted, signed off and
so on

�May want to run their own internal
archive of modules that integrates
well with the module installation tools

Deploying And Supporting Perl 6

Why CPAN6?
�Want to improve a few other things

�Allow multiple authors per module
that can make releases, not just one
as is possible now

�Be able to see the consequences of a
module installation better before
doing it (what dependencies will it
install, how much disk space will it
take, and so on)

Deploying And Supporting Perl 6

Releases And Archives
�A release is some piece of software or
information that is to be distributed; it's
made up of multiple related files

�An archive contains a set of releases
�Archives may have their own
"constitution", governing who can make
releases, namespace rules and so on

�Can create your own archives

Deploying And Supporting Perl 6

Three Parts
�CPAN6 = set of concepts and ideas for
distribution of archives

�Pause6 = management of archives,
allowing people to add releases,
handling trust issues and so on

�CPAN6.pm = a search and installation
tool

�Pause6 and CPAN6.pm replaceable

Deploying And Supporting Perl 6

Trust
�Today: username/password
authentication, then you can make a
release

� In the future: releases can be signed,
perhaps by multiple people

�Archive constitution may require a
certain number of signatures on a
release before it is trusted

Deploying And Supporting Perl 6

Status
�A great deal of the design work is done
� Implementation of both Pause6 and
CPAN6.pm are underway, but there's
nothing to play with yet

�A lot depends on the community
accepting it

�Get the latest news
http://www.cpan6.org/

Deploying And Supporting Perl 6

Summary

Deploying And Supporting Perl 6

Don't panic!
�Perl 6 is coming, both in terms of
specification and implementation

�Migration issues are being considered
and taken seriously
�Already can use Perl 5 modules from
Perl 6, source translator underway

�Module management and installation
should be getting less painful

Deploying And Supporting Perl 6

Thank you!

Deploying And Supporting Perl 6

Questions?

