
The Perl 6
Language 

Jonathan Worthington
UKUUG Spring 2007 Conference



The Perl 6 Language

Everyone loves Perl 5, because…
� It's great for hacking up one-off scripts
�Can write one-liners directly at the 
command line

�Really good at extracting data in a wide 
range of formats…

�…and spitting it out again in some other 
form, or generating reports on it

�Possible to build large systems too



The Perl 6 Language

Perl 6: the next step
�A ground-up redesign of the language
�A partial prototype interpreter is 
available to play with today

�Aims to make the easy things even 
easier, and the hard things less painful

�Much stronger when it comes to 
building large systems

�But still the Perl we know and love



The Perl 6 Language

Overview
�This talk: an introduction to writing 
programs in Perl 6
�The main message: Perl 6 rocks!

�Tomorrow’s talk: what makes up Perl 6, 
what to expect you’ll be deploying, 
migration issues, the future of CPAN
�The main message: don’t panic!



The Perl 6 Language

Hello, world!



The Perl 6 Language

Hello, world!
� In Perl 5:

�Writing \n at the end of every print 
statement is very common

� In Perl 6: the new say keyword saves 
you from having to do that

�An easy thing made easier

print "Hello, world!\n";

say "Hello, world!";



The Perl 6 Language

Variables



The Perl 6 Language

Variables
�As in Perl 5, three container types:

# Scalars hold one value
my $name = "Jonathan";

# Arrays hold many values
my @fave_foods = "Curry", "Pizza", "Beef";

# Hashes hold many key/value pairs
my %opinions = (

Perl  => ‘Awesome’,
Vista => ‘Suckful’,
Ale   => ‘Tasty’

);



The Perl 6 Language

Variables
�Unlike Perl 5, sigils are invariant

## Arrays – always use @
say @fave_foods[1]; # Pizza
@fave_foods[3] = “Yorkshire Puddings“;

## Hashes – always use %
# <...> for constant keys
say %opinions<Ale>; # Tasty
%opinions<Switzerland> = “Beautiful“;
# Curly brackets allow variables there too 
my $what = "Manchester";
%opinions{$what} = "Rainy";



The Perl 6 Language

Iteration



The Perl 6 Language

Iterating Over An Array
� Iteration = doing something for each 
thing in the array

�The bit between the curly braces is 
done for each thing in the array

�-> $name means “declare $name and 
put the current thing into it”

for @fave_foods -> $food {
say "Jonathan likes to eat $food";

}



The Perl 6 Language

Iterating Over A Hash
�Can iterate over all of the keys…

�Or all of the values with .values, or 
both at the same time with .kv

for %opinions.keys -> $what {
say “Jonathan has a view on $what“;

}

# Print environment variables
for %*ENV.kv -> $var, $value {

say “$var = $value";
}



The Perl 6 Language

Iterating Over Many Arrays At Once
�More generally, can iterate over two or 
more arrays at a time

�Use the zip function to interleave the 
elements of two or move lists

for zip(@ids; @logins; @groupids)
-> $id, $login, $groupid {

say "$login:x:$id:$groupid:...";
}



The Perl 6 Language

Conditionals



The Perl 6 Language

Save two keystrokes!
�Fairly typical if…else style construct; 
note no parentheses needed around 
the condition

if $x == 42 {
say "It's the answer!";

} elsif $x == 7 {
say "It's perfect!";

} else {
say "It's some other number.";

}



The Perl 6 Language

Junctions
�Allow you to test a variable against 
many conditions more easily

�The equivalent Perl 5 is

unless $input eq 'y' | 'n' | 'c' {
print "(y)es/(n)o/(c)ancel? ";

}

unless ($input eq 'y' ||
$input eq 'n' ||
$input eq 'c') {

print "(y)es/(n)o)/(c)ancel? ";
}



The Perl 6 Language

Junctions
�You can build junctions from an array 
too

�There are other types of junction
all & true for all elements
one ^ true for exactly one element
none true for no elements

my @bad_ext = ('vbs', 'js', 'exe', 'reg'); 
if lc($file_ext) eq any(@bad_ext) {

say "$file_ext files not allowed"; 
}



The Perl 6 Language

Chained Comparisons
�Now it's easier to check if a user input 
is sandwiched between two values

if 0 <= $score_pc <= 100 {
say "You can't score $score_pc";

}



The Perl 6 Language

I/O



The Perl 6 Language

Reading Entire Files
�Reading in an entire file is now as 
simple as

�Or to get an array with an element for 
each line in the file

�Reads the whole file in one go – very 
handy, but be careful when dealing with 
big files!

my $file_content = slurp("filename.txt");

my @lines = slurp("filename.txt");



The Perl 6 Language

Iterating Over Files Line By Line
�Use open to get a file handle; use :r
to indicate we want to read

� Iterate over the file's lines using for

�Close the file when you're done

my $fh = open "file.txt" :r;

for =$fh -> $line {
...

}

$fh.close();



The Perl 6 Language

Reading From STDIN
�All global variables start with $*
�The STDIN file handle is in $*IN

�Iteration the same as on the last 
slide…

�Can read a single line too

for =$*IN -> $line 
...

}

my $input = =$*IN;



The Perl 6 Language

Powerful List 
Processing



The Perl 6 Language

List Processing
�Perl 6 has made some big advances 
when it comes to doing operations 
involving lists (arrays) of data

�Will make computing various statistics, 
such as sums and averages, much 
neater

� In general, implemented as meta-
operators: they add meaning to all 
existing operators



The Perl 6 Language

Reduction Operators
�To form the reduction operator, 
surround any infix operator by […]

# Add all elements of the array
my $sum = [+] @values;

# Multiply together numbers from 1 to $n
my $factorial_n = [*] 1..$n;

# Check if the list is sorted ascending
if [<=] @list {

say "Sorted ascending";
}



The Perl 6 Language

Hyper Operators
�Used to perform an operation per 
element of an array

�This is similar to a loop that takes 
elements 0 from @a and @b, adds them 
and puts the result in element 0 of @c

�Gives permission for the operation on 
different elements to be parallelized => 
good for the Concurrent Future

my @c = @a >>+<< @b;



The Perl 6 Language

Cross Operators
�Forms every possible permutation of 
two or more lists

�This is a special case; can stick an 
operator in-between two Xs

(1,2) X (3,4) # ((1,3),(1,4),(2,3),(2,4))

# If @user_facts contains words relating to
# a user, can concatenate all possible
# combinations of them together – test for
# weak passwords. :-)
my @guesses = @user_facts X~X @user_facts;



The Perl 6 Language

Powerful
Text Parsing



The Perl 6 Language

From Regex To Rules And Grammars
�Regex in Perl 5 are very powerful for 
parsing

�However, they are based on regular 
languages
�Makes parsing some things, 
particularly anything recursive (e.g. 
bracketed data) tricky

�Some find the syntax a little arcane �



The Perl 6 Language

Grammars
�Grammars make defining how to parse 
things easier

�Encourages re-use  
grammar ConfigFile {

token File    { <Section>+ }
token Section { <Heading> <Entry>* }
token Heading { <'['> (\w+) <']'> \n }
token Entry   { (\w+) <ws> = <ws> 

(\w+) \n+
}

}



The Perl 6 Language

Final Thoughts



The Perl 6 Language

Play With Perl 6 Today!
� In your web browser
http://run.pugscode.org/

�Source code to Pugs (a partial Perl 6 
compiler) is on the CD or get the latest 
version from
http://www.pugscode.org/

�Perl 6 FAQ at
http://programmersheaven.com/2/Perl6-FAQ



The Perl 6 Language

Conclusion
�Perl 5 aims to make the easy things 
easy and hard things possible

�Perl 6 aims to make the easy things 
easier and the hard things less painful

� I think Perl 6 will be…



Beautiful



Cool



CoolA little crazy! ����



The Perl 6 Language

Thank you!



The Perl 6 Language

Questions?


