Playing with bird guts

Jonathan Worthington
YAPC::EU::2007

Playing with bird guts

I'm not going
todo a
dissection.

Playing with bird guts
The Plan For Today
. Take a simple Parrot program, written in PIR

. Look, from start to finish, at what happens
when we feed it to the Parrot VM

. Then we'll cover a couple of little odds and
ends that didn't really fit into that

- Do ask questions along the way if something
isn't clear

. Don't throw up Iin here if you find the guts too
disgusting, kplzthnx

Playing with bird guts

The Example Program

.Sub main :main
SI0O =1

loop:
if $I0 > 10 goto exit
SP0 = square_as_pmc ($I0)

say $PO
inc SIO
goto loop .sub square_as_pmc
exit: .param int x
.end X = mul x, x
SPO0 = new 'Integer'
SPO0 = x

.return (SPO)
.end

Playing with bird guts

IMCC

Playing with bird guts

Intermediate Code Compiler

- We invoke Parrot to run this program:

./parrot example.pir

. And it enters IMCC, which is the default

compiler front-end to Parrot

. Parrot does not interpret PIR directly, but
instead compiles it to bytecode (like machine
code, but for a virtual machine), which can

be interpreted efficiently or compl

« IMCC is the thing that does the P
bytecode translation

ed
R=>

Playing with bird guts
IMCC - Tokenization
. Breaks the PIR up into tokens

SUB | IDENT (main) | MAIN

.Sub main :main

$I0 = 1 < IREG(0) ||= DIGIT(1)
loop:

LABEL (loop)

. Implemented using lex, a popular tokenizer
generator; syntax along the lines of:

DIGIT [0-9]
" sub" return(SUB);
<emit, INITIAL>" :main" return (MAIN),;

<emit, INITIAL>\S$SI[0-9]+ DUP_AND RET (valp, IREG);

Playing with bird guts
IMCC - Parsing

. The parser takes the stream of tokens,
attempts to match patterns of tokens and
builds a data structure describing the
program

« A program is described as a list of
compilation units (one PIR sub results in one
compilation unit)

A unit in turn contains, amongst other things,
a list of instructions

Playing with bird guts

IMCC - Parsing
. The parser is written using yacc

sub: SUB {
IMCC_INFO (interp)-—->cur_unit =

imc_open_unit (interp, IMC_PCCSUB);

}
sub_label _op_ c {
1SUBROUTINE (interp,
IMCC_INFO (interp)->cur_unit, $3);

}
sub_proto '\n' { ... }

sub_params
sub_body
ESUB { ... }

’

Playing with bird guts

IMCC - Parsing
. The parser is written using yacc

IMCC_INFO (interp)-—->cur_unit =
imc_open_unit (interp, IMC_PCCSUB),;

sub_labelNop c {
iSUBROURINE (interp,
IMCC_INFO (interp)->cur_unit, $3);

}

sub_proto '\n' { .N_}
sub_params —

sub_body This is the SUB
ESUB { ... } token

’

Playing with bird guts

IMCC - Parsing
. The parser is written using yacc

sub: SUB {
IMCC_INFO (interp)-—->cur_unit =

imc_open_unit (interp, IMC_PCCSUB);

}
sub_label _op_ c {
1SUBROUTINE (interp)
IMCC_INFO (interp

>cur_unit, $3);

}

sub_proto '\n' { ... }
sub_params ,

sub_body Chunk of C we run —
ESUB { ... } adds a new compilation
; unit to the list

Playing with bird guts
IMCC - Parsing

. The parser is written using yacc

sub: SUB {
IMCC_INFO (interp)-—->cur_unit =
imc_open_unit (interp, IMC_PCCSUB),;

}
sub_label _op_ c {
1SUBROUTINE (interp,
IMCC_INFO (interp)->cur_unit, $3);

}

sub_proto '\mn' { ... }

sub_params \ :

sub_body Makes_the unit a sub_ and
ESUB { ... } associates the provided
; name with it

Playing with bird guts
IMCC - Parsing

. The parser is written using yacc

sub: SUB {
IMCC_INFO (interp)-—->cur_unit =

imc_open_unit (interp, IMC_PCCSUB);

}
|sub_1abe1_op_c {
iSUBROUTINE (inte
IMCC_INFO (inter

->cur_unit, $3);

}

sub_proto |'\n' { ... }

sub_param ,

sub_body 3"\ These refer not to
tokens, but other

ESUB { ... }
grammar rules

’

Playing with bird guts
IMCC — Regqister Allocation
« When we write PIR, we can use virtual

registers
SI0 = 42 I0 = 42
:;i ilges > igy=1266
say S$SI1 say IO
. However, we only really need one integer
register

« Register allocation algorithm tries to
minimise the number of registers used (to
always get the minimum is NP-complete)

Playing with bird guts
IMCC — Optimization

. There's a whole load of optimizations that
we can perform on register code

. Since CPUs are register architectures, there
has been much research done on this

. The optimizer is not run by default at the
moment, beyond some simple constant
folding

. Implements various techniques, though still
plenty of room for improvements

Playing with bird guts

IMCC — Bytecode Generation

- We translate the in-memory data structure to
bytecode — a stream of integers

« Each instruction has an instruction code,
which we emit first

. This is followed by its operands

« Register number, immediate integer
constant or index into the constants table

SI0O =1 - 796 0 1
if $I0 > 10 goto exit 215 10 0 31

IMCC — Bytecode Files (aka Packfiles)

. Can write the bytecode stream, along with
the table of constants and debug
information, out to disk

. Store it with the byte ordering and word size
of the machine it was compiled on => no
decoding needed when loading on same
architecture => can memory map the file!

« However, if we load it on a different
architecture, it has the information it needs
to re-order bytes or change word size

Playing with bird guts

Initialization

Playing with bird guts

Memory Pools

« PMCs and STRINGs are garbage
collectable

. Allocated out of fixed sized pools of objects
- Keep a list of pools for each size

. If a pool gets full and we need more objects
of that size, create another one and add it to
the list

. At startup, we allocate memory for these
memory pools

Playing with bird guts

Contexts

- We create one context per invocation of a
sub or closure

. A sub that calls itself recursively 10 times
will result in 10 contexts

. A Context may reference other Contexts
. Caller context — the dynamic chain

« Outer context — the static chain (where
one sub or closure is textually enclosed
within another)

Playing with bird guts

Contexts

. Context data structure contains, amongst
other things...

. Pointers into the register set

| Registers | N Registers | S Registers | P Registers

A A
bp bp_sp

» The number of registers used by the
current sub/closure

. A pointer to the current Sub or Closure

. A pointer to the current return continuation
— more about this later

Playing with bird guts

Contexts

- We create an initial, empty context that
doesn't refer to any subroutine

« Need this so main has a context to return
Into
. [hen we call the invoke v-table method of
the main subroutine

. Creates a context for the current
iInvocation of itself

« Returns bytecode offset of main sub

Playing with bird guts

Execution Time!

Playing with bird guts

Enter The Runloop!

« A runloop executes the instruction at the
current program counter, until the end of the
program is reached (or uncaught exception)

. There's more than one runloop; the simplest
one has:

« One C function for each instruction
« An array of pointers to these functions

. Index into the array with the instruction code
to locate the function to call

Playing with bird guts

Our First Instruction
. Our first instruction is an integer assignment
$I0 = 1
. This compiles down to the instruction
set_|_ic (first operand is an integer register,
the second is an integer constant)

 Function implementing the opcode
generated from entry in a .ops file

inline op set (out INT, in INT) :base_ core {
$1 = $2;
goto NEXT () ;

}

Playing with bird guts

Our First Instruction
. Our first instruction is an integer assignment
$I0 = 1
. This compiles down to the instruction
set | _Ic (first argument is an integer register,
the second is an integer constant)

 Function implementing the opcode
generated from entry in a .ops file

inline op set(but INT, in INTj :base_core {

$1 = $2;
goto NEXT () ; Types of registers the op

} operates on

Playing with bird guts

Our First Instruction
. Our first instruction is an integer assignment
$I0 = 1
. This compiles down to the instruction
set | _Ic (first argument is an integer register,
the second is an integer constant)

 Function implementing the opcode
generated from entry in a .ops file

inline op set (out INT, in INT) :base_ core {

|$1 = $2;
goto NEXT () ; C code; $n refers to the

} nth operand

Playing with bird guts

Our First Instruction
. Our first instruction is an integer assignment
$I0 = 1
. This compiles down to the instruction
set | _Ic (first argument is an integer register,
the second is an integer constant)

 Function implementing the opcode
generated from entry in a .ops file

inline op set (out INT, in INT) :base_ core {

$1 = $2;
[goto NEXT () ;| Gets substituted by ops

} build tool

Playing with bird guts

Our Second Instruction

« A conditional branch
if SI0O > 10 goto exit

. This compiles down to the instruction

t ic_i_Ic (<is > but swap the operands)

_abel compiles down to offset (in words)

inline op 1lt(in INT, in INT, labelconst INT)
:base core {
if ($1 < $2) {

}

goto OFFSET ($3);

goto NEXT() ;

}

Playing with bird guts

Calling
Subroutines

Playing with bird guts

Compiling Calls

. T he call instruction:
SP0 = square_as_pmc ($IO0)

. Actually compiles down to several
instructions when translating the PIR to
bytecode:

set_args PC4, IO
set_p_pc PO, square_as_pmc

get_results PC7, Pl
invokecc PO

Playing with bird guts

Compiling Calls
. Set_args specifies the registers containing
the arguments to be passed
set_args PC4, IO

« PC4 refers to a PMC in the constants
table, which specifies the signature

. The opcode takes a variable number of
operands

. get_results works the same way — note that

we do this before the call
get_results PC7, Pl

Playing with bird guts

Compiling Calls

. Looking up the sub to call and invoking it are
two separate steps => allows sub refs to
work

« Sub PMC representing the sub to call is in
the constants table — look it up and store it in
PO

set_p pc PO, square_as_pmc

. Then, with everything set up, use the
invokecc opcode to do the call

invokecc PO

Playing with bird guts

Inside The Callee
. The parameter syntax:

.param int x

. Actually compiles down to the get _params
opcode:

get_params PC4, IO

. Once again, specifies a signature and
registers to receive the arguments

« When we execute this op, we actually do
the passing — that is, copy the values from
the caller's to the callee's registers

Playing with bird guts

Inside The Callee

. Similarly, the return syntax:
.return (PO)

. Compiles down to the set_returns opcode:
set _returns PC7, PO

. The caller already specified the registers
to store the results in

« When we execute this op, we do the
returning — storing the values from the
callee's reqisters into the caller's registers.

Playing with bird guts

Continuation Passing Style

« When we take a continuation, we make a
copy (lazily) of the current (dynamic) chain
of contexts and the current program counter

_______________ v Continuation
Context 2 Context 2
(sub: main) (sub: main)
take
Context 1 Context 1
(sub:-) | - > (sub: -)

Playing with bird guts

Continuation Passing Style

- When we are making a call, we first make a
continuation (called a return continuation)

. Ihen we create the context for the sub being
called and store the continuation inside it

Context 3
call (sub: square_as_pmc)
Context 2 square_as_pmc, Context 2
< (sub: main) (sub: main)
Context 1 Context 1
(sub: -) (sub: -)

Playing with bird guts

Continuation Passing Style

. The .return(PO) in PIR actually compiles
down to two Iinstructions —a set_returns
and a returncc

. returncc invokes the return continuation,
which restores the call chain and PC it took

Context 3
(sub: square_as_pmc) invoke return
Context 2 continuation > Context 2
(sub: main) (sub: main)
Context 1 Context 1
(sub: -) (sub: -)

Playing with bird guts

PMCs

Playing with bird guts

Looking At square_as_pmc

. The square_as_pmc code is the first time we
explicitly have dealt with PMCs (although
some of the generated code we saw earlier
dealt with them too)

.Sub square_as_pmc
.param int x
X = mul x, x
SP0 = new 'Integer'
SP0 = x
.return (SPO)

.end

Playing with bird guts

Looking At square_as_pmc

. The square_as_pmc code is the first time we
explicitly have dealt with PMCs (although
some of the generated code we saw earlier
dealt with them too)

.Sub square_as_pmc
.param int x
X = mul x, x
|$PO0 = new 'Integer'|

SPO0 = x ‘\\\\\\\\
.return ($P0) Instantiate a PMC

.end

Playing with bird guts

Looking At square_as_pmc

. The square_as_pmc code is the first time we
explicitly have dealt with PMCs (although
some of the generated code we saw earlier
dealt with them too)

.Sub square_as_pmc
.param int x
X = mul x, x
SP0 = new 'Integer'

|$P0 = X
SIS !‘m Assign to a PMC

.end

Playing with bird guts

PMCs
 Classes implemented in C

« Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

. Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init () {
PMC int wval (SELF) = O;

Playing with bird guts

PMCs
 Classes implemented in C

« Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

. Implement some subset of a set of vtable
methods

pmclass|Integer xtends scalar ({
void init () {

PMC int val {SELF) = O;

Name of the class

Playing with bird guts

PMCs
 Classes implemented in C

« Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

. Implement some subset of a set of vtable
methods

pmclass Integer|extends scalar|{
void init () {
PMC int wval (SEL = 0;

Inheritance

Playing with bird guts

PMCs
 Classes implemented in C

« Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

. Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init () {
PMC int wval (SELF) = O;

Implementation of init vtable method

Playing with bird guts

PMCs
 Classes implemented in C

« Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

. Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init () {
PMC int wval (

The invocant

Playing with bird guts

PMCs
 Classes implemented in C

« Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

. Implement some subset of a fixed set of
vtable methods

pmclass Integer extends scalar {
void init () {
[PMC_int_val [SELF) = 0;

T

Macro accessing a slot in the PMC

Playing with bird guts
PMC Instantiation
. [he new opcode instantiates a PMC

SPO0 = new 'Integer'
. Looks up the name and resolves it to a

PMC type number (in the future, may do
lookup via the namespace)

« Provided it's found, get a chunk of
memory from a memory pool

. Initialize the PMC data structure
. Call the 1n1t vtable method

Playing with bird guts

Calling vtable methods

« Opcode implementations for PMCs simply
call the vtable methods

SPO0 = x # x is an integer parameter

. In this case, it's the set_p 1 opcode

inline op set (invar PMC, in INT) :base_core {
$1l->vtable->set_integer native (interp, $1, $2);
goto NEXT () ;

}

- Note that we pass the interpreter and the
PMC that will be accessible in the method
through SELF — implicit when writing PMC

Playing with bird guts

Calling vtable methods

- And here's the vtable method in integer.pmc
that we end up calling:

void set_integer native (INTVAL value) {
PMC int wval (SELF) = value;

}

. It's not quite this simple for all vtable
methods — some do multiple dispatch

. For example, when implementing the add
vtable method, the other PMC we are to
add may not be an Integer PMC — need
to handle this correctly

Playing with bird guts

Garbage
Collection

Playing with bird guts

When The Memory Pools Are Full...

- One of the steps for instantiating a PMC is
getting a chunk of memory from one of the
memory pools

. If all the pools are full, we do a garbage
collection run

. Find PMCs that are no longer in use and
add them to the free list

. If that fails to provide us with more memory,
we allocate another pool

Playing with bird guts

For Our Program...

. Looking at our main routine, we see that a
PMC only lasts a single iteration of the loop

.Sub main :main
SI0O =1

loop:
if $I0 > 10 goto exit
SP0 = square_as_pmc ($SIO0)
say SPO
inc $IO
goto loop

exit:

.end

Playing with bird guts

A More Interesting Example

. Here, arrows represent PMCs referencing
each other

B
>D
E

Playing with bird guts
Dead Object Detection

. At the start of DOD, we assume that all
objects are unreachable or "dead"

—L

Playing with bird guts
Dead Object Detection

. Then look through the registers to see what
PMCs are referenced from there

PO P1 P2 P3
F | E J'&/_

. —
N
E

Playing with bird guts
Dead Object Detection

. Then we iteratively locate all PMCs
referenced by living PMCs

o

S
E

F

Playing with bird guts
Dead Object Detection

. Then we iteratively locate all PMCs
referenced by living PMCs

o

>D

F

Playing with bird guts
Dead Object Detection

. All objects that are have not been marked
alive by this point are unreachable

—L —g
—&

B

Playing with bird guts

sSweep

. I he objects that were found to be dead can

now be put on the free list

PMCs with

A

>

B

—»

C

. Then they are available to allocate more

. This is a simple mark-and-sweep scheme —
there are more complex approaches that
have been prototyped in Parrot.

Playing with bird guts

JIT

Playing with bird guts

What is a JIT compiler?

Just In Time means that a chunk of
bytecode is compiled when it is needed.

-Compilation involves translating Parrot
bytecode into machine code understood by
the hardware CPU.

*High performance — can execute some
Parrot instructions with one CPU instruction.

*Not at all portable — custom implementation
needed for each type of CPU.

Playing with bird guts

How does JIT work?

For each CPU, write a set of macros that
describe how to generate native code for the
VM instructions.

*Do not need to write these for every
instruction; can fall back on calling the C
function that implements it.

*A Configure script determines the CPU type
and selects the appropriate JIT compiler to
build if one is available.

Playing with bird guts

How does JIT work?

*A chunk of memory is allocated and marked
executable if the OS requires this.

*For each instruction in the chunk of
bytecode that is to be translated:

lf a JIT macro was written for the
instruction, use that to emit native code.

*Otherwise, insert native code to call the C
function implementing that method, as an

interpreter would.

Playing with bird guts

The End

Playing with bird guts

Thank You

Playing with bird guts

Questions?

