
Playing with bird guts

Jonathan Worthington
YAPC::EU::2007

Playing with bird guts

I'm not going
to do a

dissection.

Playing with bird guts

The Plan For Today
� Take a simple Parrot program, written in PIR

� Look, from start to finish, at what happens
when we feed it to the Parrot VM

� Then we'll cover a couple of little odds and
ends that didn't really fit into that

� Do ask questions along the way if something
isn't clear

� Don't throw up in here if you find the guts too
disgusting, kplzthnx

Playing with bird guts

The Example Program
.sub main :main

$I0 = 1
loop:

if $I0 > 10 goto exit
$P0 = square_as_pmc($I0)
say $P0
inc $I0
goto loop

exit:
.end

.sub square_as_pmc
.param int x
x = mul x, x
$P0 = new 'Integer'
$P0 = x
.return($P0)

.end

Playing with bird guts

IMCC

Playing with bird guts

Intermediate Code Compiler
� We invoke Parrot to run this program:

� And it enters IMCC, which is the default
compiler front-end to Parrot

� Parrot does not interpret PIR directly, but
instead compiles it to bytecode (like machine
code, but for a virtual machine), which can
be interpreted efficiently or compiled

� IMCC is the thing that does the PIR =>
bytecode translation

./parrot example.pir

Playing with bird guts

IMCC - Tokenization
� Breaks the PIR up into tokens

� Implemented using lex, a popular tokenizer
generator; syntax along the lines of:

.sub main :main
$I0 = 1

loop:

SUB IDENT(main) MAIN

IREG(0) = DIGIT(1)

LABEL(loop)

DIGIT [0-9]
%%
".sub" return(SUB);
<emit,INITIAL>":main" return(MAIN);
<emit,INITIAL>\$I[0-9]+ DUP_AND_RET(valp, IREG);

Playing with bird guts

IMCC - Parsing
� The parser takes the stream of tokens,
attempts to match patterns of tokens and
builds a data structure describing the
program

� A program is described as a list of
compilation units (one PIR sub results in one
compilation unit)

� A unit in turn contains, amongst other things,
a list of instructions

Playing with bird guts

IMCC - Parsing
� The parser is written using yacc

sub: SUB {
IMCC_INFO(interp)->cur_unit =

imc_open_unit(interp, IMC_PCCSUB);
}
sub_label_op_c {

iSUBROUTINE(interp,
IMCC_INFO(interp)->cur_unit, $3);

}
sub_proto '\n' { ... }
sub_params
sub_body
ESUB { ... }
;

Playing with bird guts

IMCC - Parsing
� The parser is written using yacc

sub: SUB {
IMCC_INFO(interp)->cur_unit =

imc_open_unit(interp, IMC_PCCSUB);
}
sub_label_op_c {

iSUBROUTINE(interp,
IMCC_INFO(interp)->cur_unit, $3);

}
sub_proto '\n' { ... }
sub_params
sub_body
ESUB { ... }
;

This is the SUB
token

Playing with bird guts

IMCC - Parsing
� The parser is written using yacc

sub: SUB {
IMCC_INFO(interp)->cur_unit =

imc_open_unit(interp, IMC_PCCSUB);
}
sub_label_op_c {

iSUBROUTINE(interp,
IMCC_INFO(interp)->cur_unit, $3);

}
sub_proto '\n' { ... }
sub_params
sub_body
ESUB { ... }
;

Chunk of C we run –
adds a new compilation

unit to the list

Playing with bird guts

IMCC - Parsing
� The parser is written using yacc

sub: SUB {
IMCC_INFO(interp)->cur_unit =

imc_open_unit(interp, IMC_PCCSUB);
}
sub_label_op_c {

iSUBROUTINE(interp,
IMCC_INFO(interp)->cur_unit, $3);

}
sub_proto '\n' { ... }
sub_params
sub_body
ESUB { ... }
;

Makes the unit a sub and
associates the provided

name with it

Playing with bird guts

IMCC - Parsing
� The parser is written using yacc

sub: SUB {
IMCC_INFO(interp)->cur_unit =

imc_open_unit(interp, IMC_PCCSUB);
}
sub_label_op_c {

iSUBROUTINE(interp,
IMCC_INFO(interp)->cur_unit, $3);

}
sub_proto '\n' { ... }
sub_params
sub_body
ESUB { ... }
;

These refer not to
tokens, but other

grammar rules

Playing with bird guts

IMCC – Register Allocation
� When we write PIR, we can use virtual
registers

� However, we only really need one integer
register

� Register allocation algorithm tries to
minimise the number of registers used (to
always get the minimum is NP-complete)

$I0 = 42
say $I0
$I1 = 666
say $I1

I0 = 42
say I0
I0 = 666
say I0

Playing with bird guts

IMCC – Optimization
� There's a whole load of optimizations that
we can perform on register code

� Since CPUs are register architectures, there
has been much research done on this

� The optimizer is not run by default at the
moment, beyond some simple constant
folding

� Implements various techniques, though still
plenty of room for improvements

Playing with bird guts

IMCC – Bytecode Generation
� We translate the in-memory data structure to
bytecode – a stream of integers

� Each instruction has an instruction code,
which we emit first

� This is followed by its operands

� Register number, immediate integer
constant or index into the constants table

$I0 = 1
if $I0 > 10 goto exit

796 0 1
215 10 0 31

Playing with bird guts

IMCC – Bytecode Files (aka Packfiles)
� Can write the bytecode stream, along with
the table of constants and debug
information, out to disk

� Store it with the byte ordering and word size
of the machine it was compiled on => no
decoding needed when loading on same
architecture => can memory map the file!

� However, if we load it on a different
architecture, it has the information it needs
to re-order bytes or change word size

Playing with bird guts

Initialization

Playing with bird guts

Memory Pools
� PMCs and STRINGs are garbage
collectable

� Allocated out of fixed sized pools of objects

� Keep a list of pools for each size

� If a pool gets full and we need more objects
of that size, create another one and add it to
the list

� At startup, we allocate memory for these
memory pools

Playing with bird guts

Contexts
� We create one context per invocation of a
sub or closure

� A sub that calls itself recursively 10 times
will result in 10 contexts

� A Context may reference other Contexts

� Caller context – the dynamic chain

� Outer context – the static chain (where
one sub or closure is textually enclosed
within another)

Playing with bird guts

Contexts
� Context data structure contains, amongst
other things…

� Pointers into the register set

� The number of registers used by the
current sub/closure

� A pointer to the current Sub or Closure

� A pointer to the current return continuation
– more about this later

I Registers N Registers S Registers P Registers

bp bp_sp

Playing with bird guts

Contexts
� We create an initial, empty context that
doesn't refer to any subroutine

� Need this so main has a context to return
into

� Then we call the invoke v-table method of
the main subroutine

� Creates a context for the current
invocation of itself

� Returns bytecode offset of main sub

Playing with bird guts

Execution Time!

Playing with bird guts

Enter The Runloop!
� A runloop executes the instruction at the
current program counter, until the end of the
program is reached (or uncaught exception)

� There's more than one runloop; the simplest
one has:

� One C function for each instruction

� An array of pointers to these functions

� Index into the array with the instruction code
to locate the function to call

Playing with bird guts

Our First Instruction
� Our first instruction is an integer assignment

� This compiles down to the instruction
set_i_ic (first operand is an integer register,
the second is an integer constant)

� Function implementing the opcode
generated from entry in a .ops file

$I0 = 1

inline op set(out INT, in INT) :base_core {
$1 = $2;
goto NEXT();

}

Playing with bird guts

Our First Instruction
� Our first instruction is an integer assignment

� This compiles down to the instruction
set_i_ic (first argument is an integer register,
the second is an integer constant)

� Function implementing the opcode
generated from entry in a .ops file

$I0 = 1

inline op set(out INT, in INT) :base_core {
$1 = $2;
goto NEXT();

}
Types of registers the op

operates on

Playing with bird guts

Our First Instruction
� Our first instruction is an integer assignment

� This compiles down to the instruction
set_i_ic (first argument is an integer register,
the second is an integer constant)

� Function implementing the opcode
generated from entry in a .ops file

$I0 = 1

inline op set(out INT, in INT) :base_core {
$1 = $2;
goto NEXT();

}
C code; $n refers to the

nth operand

Playing with bird guts

Our First Instruction
� Our first instruction is an integer assignment

� This compiles down to the instruction
set_i_ic (first argument is an integer register,
the second is an integer constant)

� Function implementing the opcode
generated from entry in a .ops file

$I0 = 1

inline op set(out INT, in INT) :base_core {
$1 = $2;
goto NEXT();

}
Gets substituted by ops

build tool

Playing with bird guts

Our Second Instruction
� A conditional branch

� This compiles down to the instruction
lt_ic_i_ic (< is > but swap the operands)

� Label compiles down to offset (in words)

if $I0 > 10 goto exit

inline op lt(in INT, in INT, labelconst INT)
:base_core {
if ($1 < $2) {
goto OFFSET($3);

}
goto NEXT();

}

Playing with bird guts

Calling
Subroutines

Playing with bird guts

Compiling Calls
� The call instruction:

� Actually compiles down to several
instructions when translating the PIR to
bytecode:

$P0 = square_as_pmc($I0)

set_args PC4, I0
set_p_pc P0, square_as_pmc
get_results PC7, P1
invokecc P0

Playing with bird guts

Compiling Calls
� set_args specifies the registers containing
the arguments to be passed

� PC4 refers to a PMC in the constants
table, which specifies the signature

� The opcode takes a variable number of
operands

� get_results works the same way – note that
we do this before the call

set_args PC4, I0

get_results PC7, P1

Playing with bird guts

Compiling Calls
� Looking up the sub to call and invoking it are
two separate steps => allows sub refs to
work

� Sub PMC representing the sub to call is in
the constants table – look it up and store it in
P0

� Then, with everything set up, use the
invokecc opcode to do the call

set_p_pc P0, square_as_pmc

invokecc P0

Playing with bird guts

Inside The Callee
� The parameter syntax:

� Actually compiles down to the get_params
opcode:

� Once again, specifies a signature and
registers to receive the arguments

� When we execute this op, we actually do
the passing – that is, copy the values from
the caller's to the callee's registers

.param int x

get_params PC4, I0

Playing with bird guts

Inside The Callee
� Similarly, the return syntax:

� Compiles down to the set_returns opcode:

� The caller already specified the registers
to store the results in

� When we execute this op, we do the
returning – storing the values from the
callee's registers into the caller's registers.

.return(P0)

set_returns PC7, P0

Playing with bird guts

Continuation Passing Style
� When we take a continuation, we make a
copy (lazily) of the current (dynamic) chain
of contexts and the current program counter

Context 1
(sub: -)

Context 2
(sub: main)

Context 1
(sub: -)

Context 2
(sub: main)

Continuation

take

Playing with bird guts

Continuation Passing Style
� When we are making a call, we first make a
continuation (called a return continuation)

� Then we create the context for the sub being
called and store the continuation inside it

Context 1
(sub: -)

Context 2
(sub: main)

Context 1
(sub: -)

Context 2
(sub: main)

Context 3
(sub: square_as_pmc)call

square_as_pmc

Playing with bird guts

Continuation Passing Style
� The .return(PO) in PIR actually compiles
down to two instructions – a ��

and a ��������������������������������

��������������������������������� invokes the return continuation,
which restores the call chain and PC it took

Context 1
(sub: -)

Context 2
(sub: main)

Context 1
(sub: -)

Context 2
(sub: main)

Context 3
(sub: square_as_pmc) invoke return

continuation

Playing with bird guts

PMCs

Playing with bird guts

Looking At �	�
���
���	�
���
���	�
���
���	�
���
��������������

� The square_as_pmc code is the first time we
explicitly have dealt with PMCs (although
some of the generated code we saw earlier
dealt with them too)

.sub square_as_pmc
.param int x
x = mul x, x
$P0 = new 'Integer'
$P0 = x
.return($P0)

.end

Playing with bird guts

Looking At �	�
���
���	�
���
���	�
���
���	�
���
��������������

� The square_as_pmc code is the first time we
explicitly have dealt with PMCs (although
some of the generated code we saw earlier
dealt with them too)

.sub square_as_pmc
.param int x
x = mul x, x
$P0 = new 'Integer'
$P0 = x
.return($P0)

.end
Instantiate a PMC

Playing with bird guts

Looking At �	�
���
���	�
���
���	�
���
���	�
���
��������������

� The square_as_pmc code is the first time we
explicitly have dealt with PMCs (although
some of the generated code we saw earlier
dealt with them too)

.sub square_as_pmc
.param int x
x = mul x, x
$P0 = new 'Integer'
$P0 = x
.return($P0)

.end
Assign to a PMC

Playing with bird guts

PMCs
� Classes implemented in C

� Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

� Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init() {

PMC_int_val(SELF) = 0;

}
...

}

Playing with bird guts

PMCs
� Classes implemented in C

� Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

� Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init() {

PMC_int_val(SELF) = 0;

}
...

} Name of the class

Playing with bird guts

PMCs
� Classes implemented in C

� Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

� Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init() {

PMC_int_val(SELF) = 0;

}
...

} Inheritance

Playing with bird guts

PMCs
� Classes implemented in C

� Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

� Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init() {

PMC_int_val(SELF) = 0;

}
...

} Implementation of init vtable method

Playing with bird guts

PMCs
� Classes implemented in C

� Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

� Implement some subset of a set of vtable
methods

pmclass Integer extends scalar {
void init() {

PMC_int_val(SELF) = 0;

}
...

} The invocant

Playing with bird guts

PMCs
� Classes implemented in C

� Written in a .pmc file, which is run through a
preprocessor to generate .c and .h files

� Implement some subset of a fixed set of
vtable methods

pmclass Integer extends scalar {
void init() {

PMC_int_val(SELF) = 0;

}
...

} Macro accessing a slot in the PMC

Playing with bird guts

PMC Instantiation
� The new opcode instantiates a PMC

� Looks up the name and resolves it to a
PMC type number (in the future, may do
lookup via the namespace)

� Provided it's found, get a chunk of
memory from a memory pool

� Initialize the PMC data structure

� Call the
�
�
�
�
�
�
�
� vtable method

$P0 = new 'Integer'

Playing with bird guts

Calling vtable methods
� Opcode implementations for PMCs simply
call the vtable methods

� In this case, it's the set_p_i opcode

� Note that we pass the interpreter and the
PMC that will be accessible in the method
through SELF – implicit when writing PMC

$P0 = x # x is an integer parameter

inline op set(invar PMC, in INT) :base_core {
$1->vtable->set_integer_native(interp, $1, $2);
goto NEXT();

}

Playing with bird guts

Calling vtable methods
� And here's the vtable method in integer.pmc
that we end up calling:

� It's not quite this simple for all vtable
methods – some do multiple dispatch

� For example, when implementing the
��
��
��
��

vtable method, the other PMC we are to
add may not be an ���������������������������� PMC – need
to handle this correctly

void set_integer_native(INTVAL value) {
PMC_int_val(SELF) = value;

}

Playing with bird guts

Garbage
Collection

Playing with bird guts

When The Memory Pools Are Full…
� One of the steps for instantiating a PMC is
getting a chunk of memory from one of the
memory pools

� If all the pools are full, we do a garbage
collection run

� Find PMCs that are no longer in use and
add them to the free list

� If that fails to provide us with more memory,
we allocate another pool

Playing with bird guts

For Our Program…
� Looking at our main routine, we see that a
PMC only lasts a single iteration of the loop

.sub main :main
$I0 = 1

loop:
if $I0 > 10 goto exit
$P0 = square_as_pmc($I0)
say $P0
inc $I0
goto loop

exit:
.end

Playing with bird guts

A More Interesting Example
� Here, arrows represent PMCs referencing
each other

A

B

C

D

E

F

Playing with bird guts

Dead Object Detection
� At the start of DOD, we assume that all
objects are unreachable or "dead"

A

B

C

D

E

F

Playing with bird guts

Dead Object Detection
� Then look through the registers to see what
PMCs are referenced from there

A

B

C

D

E

F

P0 P1 P2 P3

F E

Playing with bird guts

Dead Object Detection
� Then we iteratively locate all PMCs
referenced by living PMCs

A

B

C

D

E

F

Playing with bird guts

Dead Object Detection
� Then we iteratively locate all PMCs
referenced by living PMCs

A

B

C

D

E

F

Playing with bird guts

Dead Object Detection
� All objects that are have not been marked
alive by this point are unreachable

A

B

C

Playing with bird guts

Sweep
� The objects that were found to be dead can
now be put on the free list

� Then they are available to allocate more
PMCs with

� This is a simple mark-and-sweep scheme –
there are more complex approaches that
have been prototyped in Parrot.

A B C

Playing with bird guts

JIT

What is a JIT compiler?

•Just In Time means that a chunk of
bytecode is compiled when it is needed.

•Compilation involves translating Parrot
bytecode into machine code understood by
the hardware CPU.

•High performance – can execute some
Parrot instructions with one CPU instruction.

•Not at all portable – custom implementation
needed for each type of CPU.

Playing with bird guts

How does JIT work?

•For each CPU, write a set of macros that
describe how to generate native code for the
VM instructions.

•Do not need to write these for every
instruction; can fall back on calling the C
function that implements it.

•A Configure script determines the CPU type
and selects the appropriate JIT compiler to
build if one is available.

Playing with bird guts

How does JIT work?

•A chunk of memory is allocated and marked
executable if the OS requires this.

•For each instruction in the chunk of
bytecode that is to be translated:

•If a JIT macro was written for the
instruction, use that to emit native code.

•Otherwise, insert native code to call the C
function implementing that method, as an
interpreter would.

Playing with bird guts

Playing with bird guts

The End

Playing with bird guts

Thank You

Playing with bird guts

Questions?

