
Parrot Update 2007

Jonathan Worthington
YAPC::EU::2007

Parrot Update 2007

Statistically

Parrot Update 2007

1 Year

Parrot Update 2007

1000s Of
Commits

Parrot Update 2007

8 Releases

Parrot Update 2007

4 Hackathons

Parrot Update 2007

4 Hackathons
(The fifth one is happening

right here, right now, at
YAPC::EU::2007!)

Parrot Update 2007

1 New Architect

Parrot Update 2007

1 New License

Parrot Update 2007

1 New Object
Model

Parrot Update 2007

1 New Bytecode
File Format

Parrot Update 2007

Ain't Statistics
Boring?

Parrot Update 2007

87% of people
agree!*

* I totally made that number up. Use it for important stuff.

Parrot Update 2007

People

Parrot Update 2007

People
� Chip Salzenberg switched from the role of
architect to pumpking

� Allison Randal became Parrot architect

� We wanted to move to monthly releases

� Delegated the release process to a group
of six people who will do two releases
each a year – one every six months

� Keeps the load of one person

� We've been doing monthly releases since

Parrot Update 2007

The New
Object Model

Parrot Update 2007

What was wrong with the old one?
� No support for roles – a big feature of the
Perl 6 object model

� No introspection (aka reflection)

� Unclear how languages should implement
their OO semantics in an interoperable way

� Inheriting from PMCs (classes implemented
in C with some extra syntax) didn't really
work too well; multiple inheritance just wasn't
possible

Parrot Update 2007

Roles
� A group of methods and attributes

� Can't be instantiated on its own

� When a class does a role, the methods and
attributes from the role are added to that
class

� Composition is flattening: if a class tries to
do two roles that have a method of the same
name, it's an error

� But there are ways to resolve these conflicts

Parrot Update 2007

Roles - Implementation
� Added a Role PMC, which you can add
methods and attributes to

� Classes have the add_role vtable method,
which requests that they compose the role
into themselves

� There is a way to specify a list of methods
and attributes to not compose from a role =>
primitive for conflict resolution (you can
implement the Perl 6 in terms of it, but it's
more general)

Parrot Update 2007

Introspection
� Being able to take a class and find out about
it

� What is it called?

� What namespace does it belong to?

� What classes does it inherit from?

� What roles does it do?

� What methods does it have?

� What attributes does it have?

Parrot Update 2007

Introspection
� Added inspect opcode

� Under the hood, it just calls inspect and
inspect_str vtable methods

Create class named LolCat
$P0 = new 'Class'
$P0.name('LolCat')
All the introspection data...
$P1 = inspect $P0 # $P1 is Hash of data
...or just one item of it.
$P2 = inspect $P0, 'name'
say $P1 # LolCat

Parrot Update 2007

Supporting many different languages
� Parrot isn't just for Perl 6

� Different languages have quite different
ways to do object orientation

� There is no "one true implementation" that
fits all of them

� We still want interoperability between
different object models

� Solution: define a common interface that
object models must implement

Parrot Update 2007

Example
� Some languages may allow addition of
attributes even after the class has been
instantiated

� In other languages classes are immutable
once instantiated

� But they all allow addition of attributes
somehow

� add_attribute is part of the standard
interface, but a class system is free to
implement it however it wishes

Parrot Update 2007

PMCProxy
� What if you want to do introspection on a
PMC?

� When you write a class in PIR, you have an
instance of the Class PMC to describe it

� There was no alternative for PMCs

� Added a PMCProxy PMC to describe a PMC

� Yes, it can describe itself �

� Implements the same interface as the Class
PMC => consistency++, easier code gen.

Parrot Update 2007

Inheriting From PMCs
� Now looks just like inheriting from a class

� Use get_class opcode to get the PMC's
PMCProxy object

� Then add it as a parent to the new class

� The PMCProxy object sits in the list of
parents, just as a Class object would

$P0 = get_class 'Hash'

$P1 = new 'Class'
add_parent $P1, $P0

Parrot Update 2007

Inheriting From PMCs – Messy Guts
� Under the hood, quite a bit going on

� PMCs store state in C structures, default
high level classes store it in an array

� Need to instantiate the PMCs we are
inheriting from and keep them around to
provide state storage

� Added a pointer to the PMC data structure to
the "real self" so that down-calls would
dispatch to any overridden methods

Parrot Update 2007

Bytecode File
Improvements

Parrot Update 2007

New Bytecode Header Format
� Magic number not endian dependent

� Separate the idea of bytecode file format
version and Parrot version

� So Parrot upgrade need not invalidate the
bytecode

� Allow for multiple competing Parrot
implementations in the future

� Support for storing UUIDs (User Unique IDs)

� New header format is implemented

Parrot Update 2007

Bytecode Annotations
� Need to provide high level language line
numbers and file names to produce
meaningful errors

� Need to be able to store any other compile
time data other languages need, for example
all the $? variables in Perl 6

� Bytecode annotations allow any Parrot
instruction to be annotated with any
key/value pair

� Designed, but not yet implemented

Parrot Update 2007

Bytecode PMCs
� At the moment, there is no way to work with
bytecode files from within a Parrot program

� A bunch of PMCs have been specified to
allow creation and manipulation of bytecode
files from PIR

� Once implemented, will simplify the internals
(less memory management work to do - just
let the garbage collector do it for us)

Parrot Update 2007

Languages

Parrot Update 2007

Perl 6
� Now passes all of the sanity tests! �

� Running a slightly cut down version of the
Perl 6 test harness

� Script to import some of the tests from the
Pugs repository - we pass some of those too

� Basic expressions, scalars, arrays, hashes,
method calls, arity-based multisubs, quoted
terms, ranges (non-lazy), try blocks, $!,
regexes, binding, listops, if and unless
statements, chained operators and more!

Parrot Update 2007

Other Languages With Activity This Year
� APL

� BASIC

� ECMAScript

� Forth

� LISP

� Lua

� ParTcl (Tcl implementation)

Parrot Update 2007

Other Languages With Activity This Year
� Plumhead (PHP implementation)

� Pynine (Python implementation)

� Pheme (Scheme implementation)

� WMLScript

Parrot Update 2007

Compiler Tools

Parrot Update 2007

Parrot Compiler Toolkit
� Parrot Compiler Toolkit is the new name for
Parrot's suite of compiler tools

� PGE = Parrot Grammar Engine

� TGE = Tree Grammar Engine

� PAST = Parrot Abstract Syntax Tree

� POST = Parrot Opcode Syntax Tree

� HLLCompiler = PMC that manages the
compilation process and provides a standard
interface

Parrot Update 2007

NQP
� NQP = Not Quite Perl

� Writing tree transforms in PIR takes quite a
bit of effort, and is often a lot of code

� Now we can write them in NQP, which gets
compiled down to PIR

� It's somewhat like a very limited Perl 6

Parrot Update 2007

Odds And Ends

Parrot Update 2007

Other Things That Deserve A Mention
� Much work has been done implementing
"seat belts" – things that help us avoid
writing bad code

� Much work has been done on portability,
thanks to a microgrant; a side-effect of this is
we can now built Parrot on C++ compilers
too

� Loads of leaks plugged, bugs fixed, tests
added – and a few performance
improvements too

Parrot Update 2007

Final Thoughts

Parrot Update 2007

Optimism!
� It's been a good year for Parrot

� Several key bits of design that were missing
or under-specified are now in good shape

� New object model unblocks things, including
some languages

� Code base is in much better shape thanks to
a focus on coding standards, as well as
automated testing of adherence

� Importantly, lots of people are having fun!

Parrot Update 2007

Thank You!

Parrot Update 2007

Questions?

