
Implementing Perl 6

Jonathan Worthington

Dutch Perl Workshop 2008



Implementing Perl 6

I didn’t know I 
was giving this 

talk until 
yesterday.



Implementing Perl 6

I could have 
written my 
slides last 

night, but…



Implementing Perl 6



Implementing Perl 6

Guess what will 
be released at 
Christmas?*



Implementing Perl 6

Guess what will 
be released at 
Christmas?*

* Which Christmas not specified.



Implementing Perl 6

Perl 6!



Implementing Perl 6

Introducing Rakudo

�Name of the Perl 6 compiler targeting 

the Parrot Virtual Machine

�Parts written in Perl 6

�Parser written using Perl 6 regexes 

(now known as rules)

�Parser actions (more later) written in 

subset of Perl 6 called NQP

�Other bits in Parrot Intermediate Repr.



Implementing Perl 6

Compiler
Architecture



Implementing Perl 6

Parrot Compiler Tools

�PCT is a tool chain for building 

compilers

�You write the "front end":

�Grammar, which specifies syntax

�Actions, which produce an Abstract 

Syntax Tree from the Parse Tree

�The backend (from the AST down to 

Parrot bytecode) is done for you



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

PGE = Parrot Grammar Engine

� Implementation of Perl 6 regexes

�Can name regexes and call them from 

each other (recursively too)
regex Year { \d**4 };

regex Place { Ukrainian | Dutch | German };

regex Workshop { 

<Place> \s Perl \s Workshop \s <Year>

};

regex YAPC {

'YAPC::' ['EU'|'NA'|'Asia'] \s <Year>

};

regex PerlEvent { <Workshop> | <YAPC> };



Implementing Perl 6

PGE = Parrot Grammar Engine

�You use PGE to write the grammar for 

your language

�You put a {*} in place to indicate that 

we should run an action

rule unless_statement {

'unless'

<EXPR> <block>

{*}

}



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

NQP = Not Quite Perl 6

�A subset of Perl 6

�Contains just enough to allow you to 

produce an Abstract Syntax Tree from 

the parse tree

�Variables and literals

�Binding (but not assignment)

�Conditionals and loops

�Object instantiation and method calls



Implementing Perl 6

NQP = Not Quite Perl 6

�This method is called when the parser 

encounters the {*} in the grammar
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�We are passed $/, the match object, 

which describes what was parsed
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�Named captures ($<….>) give you the 

match object for the sub rules
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�Writing $( $<…> ) gets you the AST for 

that match object
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�We instantiate a new AST node of type 

Op
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�This node has two children: the 

condition and the block to run
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�Also specify the type of operation; PCT 

will then generate the appropriate code
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�Also specify the match object that we 

made this from, for line numbers etc.
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

NQP = Not Quite Perl 6

�The "make" statement specifies the 

tree node we have made
method unless_statement($/) {

my $then := $( $<block> );

$then.blocktype('immediate');

my $past := PAST::Op.new(

$( $<EXPR> ), $then,

:pasttype('unless'),

:node( $/ )

);

make $past;

}



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

PAST to POST

�POST is the Parrot Opcode Syntax 

Tree

�Tree representation of Parrot 

assembly program

�Often one node = one instruction

�The PAST compiler, part of PCT, 

transforms a PAST node into (usually 

many) POST nodes



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

POST to PIR

�PIR = Parrot Intermediate 

Representation

�Text based rather than tree based

�The Parrot VM itself understands PIR, 

so for now we have to turn the POST 

tree into PIR

�One day, we may be able to go direct 

from the tree to the bytecode



Implementing Perl 6

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot



Implementing Perl 6

PIR to Parrot Bytecode

�The Parrot VM actually executes 

bytecode – a binary representation of 

the program

� It contains a compiler that turns PIR 

into Parrot Bytecode

�We can write the bytecode to disk so 

we can load it again in the future => 

don't need to compile our program 

every time => performance!



Implementing Perl 6

The Perl 6 
Grammar



Implementing Perl 6

STD.pm

�STD.pm is the standard Perl 6 

grammar, written in Perl 6 rules

�Mostly complete, though we find 

missing things occasionally

�PGE doesn't support all of the syntax it 

uses yet, so we don't use it as is; 

instead, import it bit by bit and tweak it

�End goal is that they will converge



Implementing Perl 6

Two Parsers In One

�Use bottom-up parsing for expressions 

and top-down parsing for the rest

�Have to call between them

�When top-down parser needs an 

expression, uses <EXPR> to call into 

bottom-up parser to get one

� If it needs a term, uses <term> to call 

into the top-down parser to get one



Implementing Perl 6

Top-down Parser

�Defined using token, rule and regex

�sigspace means replace any 

whitespace in the pattern with <.ws>, 

which is the current language's 

whitespace rule

yesnorulerulerulerule

nonotokentokentokentoken

noyesregexregexregexregex

SigspaceBacktracking



Implementing Perl 6

Bottom-up Parser

�We specify the operators in the 

expression grammar, for bottom up 

parsing

## multiplicative operators

proto infix:<*> is precedence('u=') { ... }

proto infix:</> is equiv(infix:<*>) { ... }

proto infix:<%> is equiv(infix:<*>) { ... }

## additive operators

proto infix:<+> is precedence('t=') { ... }

proto infix:<-> is equiv(infix:<+>) { ... }



Implementing Perl 6

Implementing 
Built-ins



Implementing Perl 6

Implementing Operators

� In Perl 6, an operator is just a (multi-

dispatch) sub called with special syntax

�Operator implemented in PIR
.sub 'infix:+' :multi(_,_)

.param pmc a

.param pmc b

$P0 = n_add a, b

.return ($P0)

.end



Implementing Perl 6

Random Aside: Operator Overloading

�Note that because they are just multi-

dispatch subs, operator overloading is 

just an extra sub.

�This is one of the overloads for 

junctions
.sub 'infix:+' :multi('Junction',_)

.param pmc x

.param pmc j

$P0 = find_global 'infix:+'

.return infix_junc_helper($P0, j, x, 1)

.end



Implementing Perl 6

Implementing Built-ins

�For now, writing a lot of these in PIR 

too, because quite a few of them map 

to Parrot opcodes

�Here is the built-in to compute the co-

tangent
.sub 'cotan'

.param num a

$N0 = tan a

$N0 = 1 / $N0

.return ($N0)

.end



Implementing Perl 6

Implementing Built-ins

�Recently someone submitted a patch to 

allow writing of built-ins in Perl 6

�Has needed a few tweaks, but folks are 

working on that and it will be applied 

probably within a week or so

�Will write what we can in Perl 6 rather 

than PIR, but some things will always 

just be easier to do in PIR 



Implementing Perl 6

What's 
Implemented



Implementing Perl 6

Never do live demos…

�Because it WILL go wrong

�Because somebody will probably have 

checked in something that broke what 

you are about to demonstrate

�Because when things don't work 

everyone will think…

� I didn't learn Perl 6 yet

�That Rakudo sucks, not me



Implementing Perl 6

How To Play 
And Help



Implementing Perl 6

How To Build Rakudo

�Check out the source from SVN

https://svn.perl.org/parrot/trunk/

�Build it:

�Run it on the command line, with a 

script or in interactive mode

perl Configure.pl

make perl6

perl6 –e "say 'Hello, world!'"

perl6 script.p6

perl6



Implementing Perl 6

How To Explore The Source

�Go into the rakudo directory

� In here you should run the PBC file, not 

the executable

�Most exciting stuff in the src directory, 

especially under classes, builtins and 

parser

cd languages/perl6

../../parrot perl6.pbc



Implementing Perl 6

Ways To Help

�Try to use it and report problems that 

you encounter

�Contribute to the test suite

�Write a built-in (some fairly easy stuff 

here; anyone up for implementing 

sortsortsortsort?)

�Contribute to the grammar and actions



Implementing Perl 6

rakudo.org

parrotcode.org

dev.perl.org/perl6/



Implementing Perl 6

Thank You



Implementing Perl 6

Questions?


