Implementing Perl 6

Jonathan Worthington
Dutch Perl Workshop 2008

| didn’t know |

was giving this
talk until
yesterday.

Implementing Perl 6

| could have
written my
slides last
night, but...

Abdijbier

Biere d” Abbaye

Implementing Perl 6

Implementing Perl 6

Guess what will
be released at
Christmas?*

Implementing Perl 6

Guess what will
be released at
Christmas?*

* Which Christmas not specified.

Implementing Perl 6

Perl 6!

Implementing Perl 6

Introducing Rakudo

«Name of the Perl 6 compiler targeting
the Parrot Virtual Machine

« Parts written in Perl 6

. Parser written using Perl 6 regexes
(now known as rules)

. Parser actions (more later) written in
subset of Perl 6 called NQP

. Other bits in Parrot Intermediate Repr.

Implementing Perl 6

Compiler
Architecture

Implementing Perl 6

Parrot Compiler Tools

«PCT is a tool chain for building
compilers

« YOU write the "front end":
. Grammar, which specifies syntax

« Actions, which produce an Abstract
Syntax Tree from the Parse Tree

. he backend (from the AST down to
Parrot bytecode) is done for you

Implementing Perl 6

Compilation Process

Program Source

v

Parse Tree

v

Abstract Syntax Tree

v

Opcode Syntax Tree

v

PIR (Parrot IL)

v

Parrot Bytecode

Implementing Perl 6

Compilation Process

Program Source

Parrot Bytecode

A
v PGE
Parse Tree <—<
v NQP
Abstract Syntax Tree <—<
Il PCT
Opcode Syntax Tree <—<
Il PCT
PIR (ParrotIL) [«——
l Parrot
-

Implementing Perl 6

Compilation Process

Program Source

A
+ PGE
Parse Tree <—<
Il NQP
Abstract Syntax Tree <—<
""""" I Tl
Opcode Syntax Tree <—<
Il PCT
PIR (ParrotIL) [«——
l Parrot
-

Parrot Bytecode

Implementing Perl 6

Compilation Process

Program Source

A
+ PGE
Parse Tree <—<
! NQP
Abstract Syntax Tree <—<
""""" I Tl
Opcode Syntax Tree <—<
Il PCT
PIR (ParrotIL) [«——
l Parrot
-

Parrot Bytecode

Implementing Perl 6

PGE = Parrot Grammar Engine
. Implementation of Perl 6 regexes

. Can name regexes and call them from

each other (recursively too)

regex Year { \d**4 },;
regex Place { Ukrainian | Dutch | German };
regex Workshop {

<Place> \s Perl \s Workshop \s <Year>
}i
regex YAPC {

'"YAPC::' ['EU'|'NA'|'Asia'] \s <Year>
}i
regex PerlEvent { <Workshop> | <YAPC> };

Implementing Perl 6

PGE = Parrot Grammar Engine

. You use PGE to write the grammar for
your language

rule unless statement {
'unless'
<EXPR> <block>

{*)
}
« YOUu put a {*} in place to indicate that

we should run an action

Implementing Perl 6

Compilation Process

Program Source

A
v PGE
Parse Tree <—<
Il NQP
Abstract Syntax Tree <—<
""""" I T
Opcode Syntax Tree <—<
Il PCT
PIR (ParrotIL) [«——
l Parrot
-

Parrot Bytecode

Implementing Perl 6

NQP = Not Quite Perl 6
« A subset of Perl 6

. Contains just enough to allow you to
produce an Abstract Syntax Tree from
the parse tree

. Variables and literals

. Binding (but not assignment)

. Conditionals and loops

- Object instantiation and method calls

Implementing Perl 6

NQP = Not Quite Perl 6

. This method is called when the parser
encounters the {*} in the grammar

method unless statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$past := PAST: :0Op.new(
S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node ($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

- We are passed $/, the match object,
which describes what was parsed

method unless statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$past := PAST: :0Op.new(
S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node ($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

«Named captures ($<....>) give you the
match object for the sub rules
method unless statement ($/) {

my $then := $($<block>);
Sthen.blocktype ('immediate');
my $past := PAST: :0Op.new(

$S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

« Writing $($<...>) gets you the AST for
that match object
method unless statement ($/) {

my S$then := $($<block>);
Sthen.blocktype ('immediate');
my S$past := PAST: :0Op.new(

S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

. We instantiate a new AST node of type
Op

method unless statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$Spast := PAST: :Op.new (
S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node ($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

I his node has two children: the
condition and the block to run

method unless_ statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$past := PAST: :0Op.new(
S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node ($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

. Also specify the type of operation; PCT
will then generate the appropriate code

method unless statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$past := PAST: :0Op.new(
S(S<EXPR>), $Sthen,
:pasttype('unless'),
:node ($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

 Also specify the match object that we
made this from, for line numbers etc.

method unless statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$past := PAST: :0Op.new(
S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node($/)

) ;

make $past;

Implementing Perl 6

NQP = Not Quite Perl 6

. The "make" statement specifies the
tree node we have made

method unless statement ($/) {

my $then := $($<block>);

Sthen.blocktype ('immediate');

my S$past := PAST: :0Op.new(
S(S<EXPR>), $Sthen,
:pasttype ('unless'),
:node ($/)

) ;

make $past;

Implementing Perl 6

Compilation Process

Program Source

A
+ PGE
Parse Tree <—<
v NQP
Abstract Syntax Tree <—<
""""" I e
Opcode Syntax Tree <—<
‘ PCT
PIR (ParrotIL) [«——
l Parrot
-

Parrot Bytecode

Implementing Perl 6

PAST to POST

«POST is the Parrot Opcode Syntax
Tree

. [ree representation of Parrot
assembly program

. Often one node = one instruction

. The PAST compiler, part of PCT,
transforms a PAST node into (usually
many) POST nodes

Implementing Perl 6

Compilation Process

Program Source

A
+ PGE
Parse Tree <—<
Il NQP
Abstract Syntax Tree <—<
""""" i o
Opcode Syntax Tree <—<
‘ PCT
PIR (ParrotIL) ~ «~——
i Parrot
-

Parrot Bytecode

Implementing Perl 6

POST to PIR

« PIR = Parrot Intermediate
Representation

o | ext based rather than tree based

« | he Parrot VM itself understands PIR,
so for now we have to turn the POST
tree into PIR

.One day, we may be able to go direct
from the tree to the bytecode

Implementing Perl 6

Compilation Process

Program Source —
+ PGE
Parse Tree <—<
Il NQP
Abstract Syntax Tree <—<
""""" [Te3 A
Opcode Syntax Tree <—<
‘ PCT
PIR (ParrotIL) ~ «~———
l Parrot
-

Parrot Bytecode

Implementing Perl 6

PIR to Parrot Bytecode

. The Parrot VM actually executes
bytecode — a binary representation of
the program

oIt contains a compiler that turns PIR
into Parrot Bytecode

« We can write the bytecode to disk so
we can load it again in the future =>
don't need to compile our program
every time => performance!

pl

Implementing Perl 6

The Perl 6
Grammar

Implementing Perl 6

STD.pm

«STD.pm is the standard Perl 6
grammar, written in Perl 6 rules

«Mostly complete, though we find
missing things occasionally

« PGE doesn't support all of the syntax it
uses yet, so we don't use it as Is;
iInstead, import it bit by bit and tweak it

- ENd goal is that they will converge

Implementing Perl 6

Two Parsers In One

. Use bottom-up parsing for expressions
and top-down parsing for the rest

. Have to call between them

« When top-down parser needs an
expression, uses <EXPR> to call into
bottom-up parser to get one

.If It needs a term, uses <term> to call
into the top-down parser to get one

Implementing Perl 6

Top-down Parser
« Defined using token, rule and regex

Backtracking Sigspace
regex yes no
token no no

rule no yes

Sigspace means replace any
whitespace in the pattern with <.ws>,
which is the current language's
whitespace rule

Implementing Perl 6

Bottom-up Parser

« We specity the operators in the
expression grammar, for bottom up

parsing
multiplicative operators
proto infix:<*> is precedence('u=') { ... }
proto infix:</> is equiv(infix:<*>) { ... }
proto infix:<%> is equiv(infix:<*>) { ... }

additive operators
proto infix:<+> is precedence('t=') { ... }
proto infix:<-> is equiv(infix:<+>) { ... }

Implementing Perl 6

Implementing
Built-ins

Implementing Perl 6

Implementing Operators

.In Perl 6, an operator is just a (multi-
dispatch) sub called with special syntax

« Operator implemented in PIF

.sub 'infix:+' :multi(_,_)
.param pmc a
.param pmc b
SP0 = n add a, b
.return ($PO)

.end

i e

Implementing Perl 6

Random Aside: Operator Overloading

- Note that because they are just multi-
dispatch subs, operator overloading is
just an extra sub.

1 his IS one of the overloads for
junctions

.sub 'infix:+' :multi('Junction’',)

.param pmc X

.param pmc

SPO0 = find global 'infix:+'

.return infix_ junc_helper ($P0, j, x, 1)
.end

Implementing Perl 6

Implementing Built-ins

« For now, writing a lot of these in PIR
too, because quite a few of them map
to Parrot opcodes

«Here Is the built-in to compute the co-
tangent

.sub 'cotan'
.param num a
SNO = tan a
SNO =1 / $NO
.return (SNO)
.end

Implementing Perl 6

Implementing Built-ins

- Recently someone submitted a patch to
allow writing of built-ins in Perl 6

«Has needed a few tweaks, but folks are
working on that and it will be applied
probably within a week or so

« Will write what we can in Perl 6 rather
than PIR, but some things will always
just be easier to do in PIR

Implementing Perl 6

What's
Implemented

Implementing Perl 6

Never do live demos...
«Because it WILL go wrong

«Because somebody will probably have
checked in something that broke what
you are about to demonstrate

.Because when things don't work
everyone will think...

.| didn't learn Perl 6 yet
. I hat Rakudo sucks, not me

Implementing Perl 6

How [0 Play
And Help

Implementing Perl 6

How To Build Rakudo

- Check out the source from SVN
https://svn.perl.org/parrot/trunk/

. Build it:

perl Configure.pl
make perlé6

« Run it on the command line, with a

script or in interactive mode

perl6é -e "say 'Hello, world!'"
perl6 script.pb
perlé6

Implementing Perl 6

How To Explore The Source

« GO into the rakudo directory
cd languages/perlé6
.In here you should run the PBC file, not
the executable
../../parrot perlé6.pbc
« Most exciting stuff in the src directory,
especially under classes, builtins and
parser

Implementing Perl 6

Ways To Help

o [ry to use it and report problems that
you encounter

« Contribute to the test suite

« Write a built-in (some fairly easy stuff
here; anyone up for implementing
sort?)

. Contribute to the grammar and actions

Implementing Perl 6

rakudo.orgd
parrotcode.org

dev.perl.org/perl6/

Implementing Perl 6

Thank You

Implementing Perl 6

Questions?

