
Jonathan Worthington

Linuxwochenende 2008

Rakudo Perl 6 and Parrot

Rakudo Perl 6 and Parrot

Me

�From England

Rakudo Perl 6 and Parrot

Me

�From England

�And yes, I do like tea…

Rakudo Perl 6 and Parrot

Me

�From England

�And yes, I do like tea…

�…but I prefer it without milk in.

Rakudo Perl 6 and Parrot

Me

�From England

�And yes, I do like tea…

�…but I prefer it without milk in.

�Currently living in Bratislava, Slovakia.

Rakudo Perl 6 and Parrot

Me

�From England

�And yes, I do like tea…

�…but I prefer it without milk in.

�Currently living in Bratislava, Slovakia

�Just an hour from here

�Like Vienna, it's beautiful…

Rakudo Perl 6 and Parrot

Me

�From England

�And yes, I do like tea…

�…but I prefer it without milk in.

�Currently living in Bratislava, Slovakia

�Just an hour from here

�Like Vienna, it's beautiful…

�…but beer only costs 1 euro a pint ☺

Rakudo Perl 6 and Parrot

Me

�From England

�And yes, I do like tea…

�…but I prefer it without milk in.

�Currently living in Bratislava, Slovakia

�Just an hour from here

�Like Vienna, it's beautiful…

�…but beer only costs 1 euro a pint ☺

�Er, half litre

Rakudo Perl 6 and Parrot

My Talk

�An overview of three technologies

�The Parrot VM – a virtual machine for

dynamic languages

�The Parrot Compiler Toolkit (= PCT)

– a tool chain for rapidly developing

compilers targeting Parrot

�Rakudo, a Perl 6 implementation on

Parrot built using PCT

Rakudo Perl 6 and Parrot

Parrot

Rakudo Perl 6 and Parrot

Parrot Is A Virtual Machine

�Virtual instruction set

�Hides away the details of the

underlying hardware

� Interface to IO, threading, etc.

�Hides away the details of the

underlying operating system

�"Write once, run anywhere"

�Or as close as is realistically possible

Rakudo Perl 6 and Parrot

Register Architecture

� .Net CLR and JVM are stack based

�Parrot is register based

�Faster to interpret, since no stack

pointer to keep (need to run on many

odd platforms; shouldn't rely on JIT)

�A little easier to JIT-compile too; "just"

a register allocation problem

�Variable sized register frames per sub

Rakudo Perl 6 and Parrot

HLL Feature Support

�Parrot provides support for a range of

high-level language features

�By providing support for them at the VM

level…

�Compilers for different languages

don't need to re-invent the wheel

�Different languages can inter-operate

Rakudo Perl 6 and Parrot

Examples Of HLL Features In The VM

�Common set of calling conventions

�Multiple dispatch

�Classes, attributes, methods, objects,

inheritance, introspection (reflection)

�Namespaces

�Continuations, co-routines, closures

�Lexically scoped variables

�And more…

Rakudo Perl 6 and Parrot

But Languages Are Different!

�We want to support a load of existing

languages

�Python

�Ruby

�PHP

�JavaScript

�But they all have slightly different ideas

about how certain things work…

Rakudo Perl 6 and Parrot

PMCs

�PMC = Parrot Magic Class

� Implement some of a fixed set of

methods that perform a range of

common operations

�Range from simple things, like get an

integer representation of this thing…

�…to more complex OO-related things,

such as adding a parent class

Rakudo Perl 6 and Parrot

Examples Of PMCs

� Integer PMC – implements methods

relating to arithmetic

�Array PMC – implements methods

relating to keyed access

�Class PMC – implements object

orientation related methods

�Sub PMC – implements invoke method,

and a few others (name, etc.)

Rakudo Perl 6 and Parrot

Different Semantics, Common Interface

�The PMCs all provide the same

interface

�Languages can implement this

common interface to provide their own

semantics

�For example, a Perl array can return

"undefined" on access to an out-of-

range element, whereas a Java array

could throw an exception

Rakudo Perl 6 and Parrot

Extensibility

�Don't need to have all the PMCs in the

Parrot core; can build them into a

dynamically linked library

�Can also dynamically load additional

opcodes (instructions), to augment the

VM's instruction set

�Language distribution = compiler +

(optionally) PMC Library + (optionally)

Opcode Library

Rakudo Perl 6 and Parrot

PIR

�Parrot Intermediate Representation

�Essentially, the Parrot VM's "assembly"

�However, for some common things (like

method calls), it turns some syntactic

sugar into the several real instructions it

takes to do it

�Also does register allocation for you, so

compiler writers needn't worry about it

Rakudo Perl 6 and Parrot

Some Simple PIR Examples

�"Hello, world!" – of course

�Compute The Answer

.sub 'main' :main

print "Hello, world!\n"

.end

.sub 'main' :main

$I0 = 25

$I1 = 17

$I2 = $I0 + $I1

print $I2

print "\n"

.end

Rakudo Perl 6 and Parrot

Some Simple PIR Examples

�Factorial
.sub 'fact'

.param int n

if n > 1 goto rec

.return (1)

rec:

$I0 = n – 1

$I1 = fact($I0)

$I1 *= n

.return ($I1)

.end

Rakudo Perl 6 and Parrot

Parrot
Compiler
Toolkit

Rakudo Perl 6 and Parrot

Writing Compilers Is Easy…

�…if you have the right tools

�PCT aims to be a Right Tool

�You write the "front end":

�Grammar, which specifies syntax

�Actions, to produce an Abstract

Syntax Tree from the Parse Tree

�The backend (from the AST down to

Parrot bytecode) is done for you

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

PGE = Parrot Grammar Engine

� Implementation of Perl 6 rules

�A bit like regexes, but taken a step

further so we can use them to write a

full grammar

�Unlike more traditional tools like lex and

yacc, where you write a tokenizer and a

grammar, here you just write the parse

rules and the tokenizer is generated for

you

Rakudo Perl 6 and Parrot

An Example Rule

�You use PGE to write the grammar for

your language

�For example, here's how we could

parse an if statement

�You put a {*} in place to indicate that

we should run an action

rule if_statement {

'if' <expression> <block>

{*}

}

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�A subset of Perl 6

�Contains just enough to allow you to

produce an Abstract Syntax Tree from

the parse tree

�Variables and literals

�Binding (but not assignment)

�Conditionals and loops

�Object instantiation and method calls

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�This method is called when the parser

encounters the {*} in the grammar
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�We are passed $/, the match object,

which describes what was parsed
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�Named captures ($<….>) give you the

match object for the sub rules
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�Writing $($<…>) gets you the AST for

that match object
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�We instantiate a new AST node of type

Op
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�This node has two children: the

condition and the block to run
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�Also specify the type of operation; PCT

will then generate the appropriate code
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�Also specify the match object that we

made this from, for line numbers etc.
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

NQP = Not Quite Perl 6

�The "make" statement specifies the

tree node we have made
method if_statement($/) {

my $then := $($<block>);

$then.blocktype('immediate');

my $past := PAST::Op.new(

$($<EXPR>), $then,

:pasttype('if'),

:node($/)

);

make $past;

}

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

PAST to POST

�POST is the Parrot Opcode Syntax

Tree

�Tree representation of Parrot

assembly program

�Often one node = one instruction

�The PAST compiler, part of PCT,

transforms a PAST node into (usually

many) POST nodes

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

POST to PIR

�PIR = Parrot Intermediate

Representation

�Text based rather than tree based

�The Parrot VM itself understands PIR,

so for now we have to turn the POST

tree into PIR

�One day, we may be able to go direct

from the tree to the bytecode

Rakudo Perl 6 and Parrot

Compilation Process

Program Source

Parse Tree

Abstract Syntax Tree

Opcode Syntax Tree

PIR (Parrot IL)

Parrot Bytecode

PGE

NQP

PCT

PCT

Parrot

Rakudo Perl 6 and Parrot

PIR to Parrot Bytecode

�The Parrot VM actually executes

bytecode – a binary representation of

the program

� It contains a compiler that turns PIR

into Parrot Bytecode

�We can write the bytecode to disk so

we can load it again in the future =>

don't need to compile our program

every time => performance!

Rakudo Perl 6 and Parrot

Languages

�PCT is being used to build compilers

for a range of languages…

�Perl 6 (Rakudo)

�PHP (Pipp)

�Python (Pynie)

�Ruby (Cardinal)

�SmallTalk (ChitChat)

�LOLCODE

Rakudo Perl 6 and Parrot

Yes, LOLCODE

HAI

CAN HAS STDIO?

I HAS A VAR

IM IN YR LOOP

UP VAR!!1

VISIBLE VAR

IZ VAR BIGGER THAN 10? KTHXBYE

IM OUTTA YR LOOP

KTHXBYE

Rakudo Perl 6 and Parrot

Perl 6

Rakudo Perl 6 and Parrot

What is Perl 6?

�Perl 5 has been and continues to be

very widely used

�Perl community is still very active

�Perl is less fashionable than it once

was, but no less useful

�Perl 6 is a ground-up re-design and re-

implementation of the language

�Not backward compatible

Rakudo Perl 6 and Parrot

Why start from scratch?

�Perl was first released in 1987

� It's now more than 20 years later; it'd

be nice to think we learned a few things

about languages in that time ☺

�Perl 5 internals are difficult to get into

and extend

�Breaking backwards compatibility gives

much more design freedom

Rakudo Perl 6 and Parrot

Migration

�As usual with Perl, There's More Than

One Way To Do It

� Implementation of a Perl 5 to Perl 6

translator is underway

�Will retrain comments and all that a

parser usually throws away

�Will be able to use Perl 5 modules from

Perl 6

Rakudo Perl 6 and Parrot

Isn't it taking a while?

�Yes, because…

� It's a large and complex project

�Doing some things that haven't been

done in other languages before

�Much is done by volunteers, though

there has been and is some funding

�Perl 5 is still very powerful and being

actively developed too

Rakudo Perl 6 and Parrot

So What's New?

�Covering all of the new features of Perl

6, along with the changes from Perl 5,

would take quite a while

�Going to give you a very quick look at

some of the highlights

Rakudo Perl 6 and Parrot

Chained Comparisons

�How often do you write stuff like:

� In Perl 6 that is just:

�Note that we can drop the parentheses

on the condition too

if ($x >= 0 && $x <= 100) {

...

}

if 0 <= $x <= 100 {

...

}

Rakudo Perl 6 and Parrot

Junctions

�How often do you write stuff like:

� In Perl 6 that is just:

�Junction = something that you can use

where you'd use a single value, but

acts as all of them simultaneously

if ($drink eq 'Beer' || $drink eq 'Wine') {

...

}

if $drink eq 'Beer' | 'Wine' {

...

}

Rakudo Perl 6 and Parrot

Powerful New Object Model

�Now syntax for declaring classes,

attributes and methods

�The method call operator is now .
class Beer is Drink {

has $.units;

has $.type;

method consume($consumer) {

$consumer.alcohol += $.units;

self.spill() if $consumer.drunk;

}

}

Rakudo Perl 6 and Parrot

New Signature Syntax

�Rather than just getting an array of

parameters, you can write a signature
sub add($x, $y) {

return $x + $y;

}

say add(37, 5); # 42

sub greet($name, :$greeting = 'Guten Tag') {

say "$greeting, $name";

}

greet('Hans'); # Guten Tag, Hans

greet('Lena', greeting => 'Privet');

Privet, Lena

Rakudo Perl 6 and Parrot

New Regex Syntax

�Many languages today use Perl

Compatible Regular Expressions

�Regex are known for being rather, well,

scary and line-noise-ish

�Perl 6 gives them a thorough re-

working

�Easy to build reusable bits of regex and

compose them

Rakudo Perl 6 and Parrot

New Regex Syntax

�Whitespace not matched as part of the

regex now – so space stuff out!

� […] is a non-capturing group

�Put a literal in quotes, like elsewhere

�Build other regex out of it

regex Decimal { \d+ ['.' \d+]? };

regex Temperature { <Decimal> \s* [C|F] };

regex HighTemp { 'High' \W+ <Temperature> }

regex LowTemp { 'Low' \W+ <Temperature> }

Rakudo Perl 6 and Parrot

Grammars

�Can collect a bunch of regex together

into grammars (like classes but with

regex instead of methods)

�Good for building parsers

�Unlike traditional regex, has control of

backtracking

�Auto-generates a lexer for you

�Perl 6 will parse itself

Rakudo Perl 6 and Parrot

Multiple Dispatch

�One name, different signatures

�When you do a call, it dispatches to the

best candidate

�All operators are really just multiple

dispatch subs => overloading is just

writing a multi-sub

sub win(Paper $x, Stone $y) { True }

sub win(Scissors $x, Paper $y) { True }

sub win(Stone $x, Scissors $y) { True }

sub win(Any $x, Any $y) { False }

Rakudo Perl 6 and Parrot

Rakudo

Rakudo Perl 6 and Parrot

Rakudo vs. Perl 6

�Perl 6 is the name of the language

�Rakudo is an implementation of the

Perl 6 language

�However, it's not the only one that is in

progress, or that exists

�Pugs = Perl 6 in Haskell, currently not

maintained

�kp6 and SMOP are two others

Rakudo Perl 6 and Parrot

Why "Rakudo"?

�Suggested by Damian Conway

�Some years ago, Con Wei Sensei

introduced a new martial art in Japan

named "The Way Of The Camel"

� In Japanese, this is "Rakuda-do"

�The name quickly became abbreviated

to "Rakudo", which also happens to

mean "paradise" in Japanese

Rakudo Perl 6 and Parrot

Status

�Rakudo is not a complete

implementation of Perl 6 yet

�However, all of the code that I showed

in the previous section of the talk will

run on Rakudo today…

�…and much more.

�Uses PCT, meaning much of it is in

Perl 6 rules and a subset of Perl 6

Rakudo Perl 6 and Parrot

What's (Mostly) Implemented?

�Variables: scalars, arrays, and hashes

�Wide range of operators

�Conditionals and loops

�Subroutines with signatures

�Classes, attributes, methods,

inheritance, delegation, roles and

composition, runtime mix-ins

�Enumerations

Rakudo Perl 6 and Parrot

What's (Mostly) Implemented?

�Regexes and grammars

�Type constraints on variables,

parameters and attributes

�Multiple dispatch (very much a work in

progress, but getting there)

�Basic junction support (but much, much

more to do here)

�Basic I/O

Rakudo Perl 6 and Parrot

Compilation To Bytecode

�You can compile your programs or

modules down to Parrot bytecode

�Means you don't have to run the

compiler every time you want to run the

program

�Additionally, use mmap when it's

available, so Parrot instances can

share the bytecode file

Rakudo Perl 6 and Parrot

mod_perl6

�There is also basic support for writing

Apache handlers in Perl 6 now

�mod_parrot provides most of what is

needed, and mod_perl6 is a thin layer

(written mostly in Perl 6 itself) on top of

that

�Easy to make mod_your_language

�Yes, we do have mod_lolcode ☺

Rakudo Perl 6 and Parrot

Learning More

Rakudo Perl 6 and Parrot

Where To Learn More

�The Parrot Website

http://www.parrot.org/

�The Parrot Blog recently had an 8-part

PCT tutorial posted

http://www.parrotblog.org/

�The Perl 6 implementation on Parrot

(named Rakudo) has a site here

http://www.rakudo.org/

Rakudo Perl 6 and Parrot

Get Involved!

�Join the Parrot and/or Perl 6 compiler

mailing list

�Pop onto the IRC channel

�Get the source and start hacking

�Partial implementations of many

languages – come and help us get

your favorite one running on Parrot

�Or if you like C, lots of VM guts work

Rakudo Perl 6 and Parrot

Come!

�There will be a Perl Workshop, one day

in Vienna, one day in Bratislava

�7th and 8th of November

http://conferences.yapceurope.org/tcpw2008/

Rakudo Perl 6 and Parrot

Danke

Rakudo Perl 6 and Parrot

Questions?

