
Object Orientation,

The Perl 6 Way

Jonathan Worthington

YAPC::Europe 2008

Object Orientation, The Perl 6 Way

.WHO

Object Orientation, The Perl 6 Way

Originally from England…

Object Orientation, The Perl 6 Way

…but now living in Slovakia.

Object Orientation, The Perl 6 Way

…but now living in Slovakia.

Erm, where?

?

Object Orientation, The Perl 6 Way

…but now living in Slovakia.

Right Here

Erm, where?

Object Orientation, The Perl 6 Way

My Talks

�Giving two talks about Perl 6

�First talk (this one) is about object

orientation in Perl 6

�Second talk (right after this one) is about

the Perl 6 type system

�All code examples presented in the talk

today can be run in Rakudo (Perl 6

compiler for the Parrot Virtual Machine)

Object Orientation, The Perl 6 Way

Classes

Object Orientation, The Perl 6 Way

The class Keyword

� In Perl 5, we use package whether we

are writing a class or not

� In Perl 6, we differentiate them

�class = a class; can be instantiated

and has instance data

�role = re-usable unit of functionality

that can be composed into a class

�module = subs in a namespace

Object Orientation, The Perl 6 Way

Today's Examples

� I love to travel

�Going to implement a simple system to

manage journeys, using the OO features

of Perl 6

�To start off with, we'll introduce classes

to represent places and journeys
class Place {

}

class Journey {

}

Object Orientation, The Perl 6 Way

Attributes With Accessors

�Use the has keyword to introduce

attributes

�The . twigil states an accessor method

should be generated

�The rw trait specifies that the accessor

method should return an lvalue

class Place {

has $.name;

has $.population is rw;

}

Object Orientation, The Perl 6 Way

Attributes With Accessors

�Can also use the ! twigil to declare a

private attribute

�Even public attributes have $!name

declared; it refers to the underlying

storage location

class Journey {

has $.from;

has $.to;

has $!start_time;

has $!end_time;

}

Object Orientation, The Perl 6 Way

Methods

�Differentiated from subs in Perl 6; use
the method keyword

�No need to list invocant in parameter list

�Aside: Perl 6 has parameter lists, so you

can list the parameters taken, as in

many other languages. To cover it in

detail would take another 30 minutes…

method opinion() {

say "I luvs ma travelz.";

}

Object Orientation, The Perl 6 Way

Some More Methods

�Methods that work with our private

attributes
method start() { $!start_time = time(); }

method end() { $!end_time = time(); }

method duration() {

if !$!start_time {

die "Journey not started yet.";

} else {

return $!end_time ??

$!end_time - $!start_time !!

time() - $!start_time;

}

}

Object Orientation, The Perl 6 Way

Proto-Objects

� In Perl 6, there is no class object

� Instead, when you declare a class, a

proto-object in installed in the

namespace under the name of the class

�An "empty instance" of the class

�Can call any methods that do not

access the state

�This includes the new method

Object Orientation, The Perl 6 Way

Instantiation and Method Calls

�You can instantiate the class by calling
the new method

�Note the new syntax in Perl 6 for
method calls; we now use .

�Can call the opinion method on the

instance:

my $city = Place.new();

my $trip = Journey.new();

$trip.opinion(); # I luvz ma travelz.

$trip.opinion; # same

Object Orientation, The Perl 6 Way

Initializing Attributes

�Pass named parameters to new
my $lhasa = Place.new(

name => 'Lhasa',

population => 257400

);

my $xian = Place.new(

name => 'Xian',

population => 2670000

);

my $trip = Journey.new(

from => $lhasa,

to => $xian

);

Object Orientation, The Perl 6 Way

Inheritance

�There's More Than One Way To Travel

�Make subclasses of Journey for them
class TrainJourney is Journey {

has $.train_no;

has $.coach;

has $.place;

}

class Flight is Journey {

has $.flight_no;

}

class Walk is Journey {

}

Object Orientation, The Perl 6 Way

Initializing Parent Attributes

�To initialize the attributes of a parent

class, need slightly different syntax

�You may find this messy; in that case
you are free to define your own new

method that does what you like

my $trip = TrainJourney.new(

Journey{ from => $lhasa, to => $xian },

train_no => 'T28',

coach => '12',

place => '68'

);

Object Orientation, The Perl 6 Way

Auto-vivification

�Doing hash-like indexing into a proto-

object actually returns a copy of the

proto-object with an auto-vivification

closure attached
my $from_home = Journey{

from => $bratislava

};

my $to_yapc = $from_home.new(

to => $copenhagen

);

say $to_yapc.from.name; # Bratislava

say $to_yapc.to.name; # Copenhagen

Object Orientation, The Perl 6 Way

Delegation

�We might like to have from_name and

to_name methods on our Journey class

�They just call the name method on the

Place class

�Use handles to generate them
class Journey {

has $.from handles :from_name<name>;

has $.to handles :to_name<name>;

...rest of the class...

}

Object Orientation, The Perl 6 Way

Delegation

�The handles trait verb doesn't just take a

pair, but can also take

�A single string, to delegate one

method and not change the name

�A list of strings and pairs to delegate

without or with name changes (can

mix them together in one list)

�More things not yet implemented

(including regex/substitutions)

Object Orientation, The Perl 6 Way

Roles

Object Orientation, The Perl 6 Way

Pollution

�We want to add pollution tracking

functionality into our journeys

Object Orientation, The Perl 6 Way

Pollution

�Only want to apply it to some classes

�A Flight and TrainJourney will pollute,

but a Walk will not

�We'd also like to be able to re-use the

functionality of calculating pollution on

other things that are not Journeys

Object Orientation, The Perl 6 Way

Introducing Roles

�Allow us to implement a piece of

functionality (methods and attributes)

that can be composed into a class

�Composition is flattening

�Conflicts between methods of the

same name from different roles will be

flagged up at compile time

�Class gets last say in resolving the

conflict

Object Orientation, The Perl 6 Way

Introducing Roles

� Implement a role with two attributes and

a method

�Attributes declared with has as if they

were declared in the class

role Pollute {

has $.carbon_per_unit;

has $.unit;

method carbon_footprint($units) {

return $units * $!carbon_per_unit;

}

}

Object Orientation, The Perl 6 Way

Composing Roles

�We compose roles into classes using
the does keyword

�Use multiple does before each role

name to compose many roles

class TrainJourney is Journey does Pollute {

has $.train_no;

has $.coach;

has $.place;

}

class Flight is Journey does Pollute {

has $.flight_no;

}

Object Orientation, The Perl 6 Way

Roles As Mix-ins

�As well as composing roles at compile

time, we can also treat them as mix-ins

at runtime

�This derives a new anonymous class

containing the methods and attributes

provided by the role

�Note: methods in mixed-in role override

those in the class; no collision detection

here

Object Orientation, The Perl 6 Way

Roles As Mix-ins

�Useful for adding on extra things that we

weren't expecting…

Object Orientation, The Perl 6 Way

Roles As Mix-ins

�Useful for adding on extra things that we

weren't expecting…

�…like delays…

Object Orientation, The Perl 6 Way

Roles As Mix-ins

role Delay {

has $.duration is rw;

method opinion() {

if $.duration <= 5 {

say "I luvs ma travelz.";

} elsif $.duration < 30 {

say "It's fine.";

} elsif $.duration < 60 {

say "*sigh*";

} else {

say "AAAARRRRRRGGGGHHHH!!!";

}

}

}

Object Orientation, The Perl 6 Way

Roles As Mix-ins

�We use the does infix operator to mix a

role in at runtime

� If we have just one attribute, we have

some special syntax to initialize it in one

go (it's not actually a sub call)

$journey does Delay;

$journey.duration = 70;

$journey.opinion; # AAAARRRRRRGGGGHHHH!!!

$journey does Delay(40);

$journey.opinion; # *sigh*

Object Orientation, The Perl 6 Way

Enumerations

Object Orientation, The Perl 6 Way

Enumerations

�The enum keyword allows you to

introduce an enumeration type

�By default, the values map to Int values

starting at 0

�But you can use strings too…

enum Purpose <BusinessTrip Vacation>;

say BusinessTrip; # 0

say Vacation; # 1

enum Phonetic [:Alpha<A>, Bravo, Charlie,

Delta, Echo, ..., Zulu];

Object Orientation, The Perl 6 Way

Enumerations

�You can use an enumeration as a role

and mix in into an existing object

�Additionally, there is the but operator,

which makes a copy of the value and

then operates on that; it also knows how

to generalize an enum value to it's type

$journey does Purpose(Vacation);

sub make_vacation($trip) {

return $trip but Vacation;

}

Object Orientation, The Perl 6 Way

Enumerations

�After mixing in with the but or does

operator, you get a method of the same

name as the enum, returning the current

value

�As well as methods for each of

members of the enum returning a Bool

$journey does Purpose(BusinessTrip);

say $journey.Purpose; # 0

say $journey.BusinessTrip; # 1

say $journey.Vacation; # 0

Object Orientation, The Perl 6 Way

Other Bits In
Rakudo

Object Orientation, The Perl 6 Way

Meta-classes (incomplete)

�Each class has a meta-class, which can

be retrieved using the .HOW macro

�Will provide a way to get a list of

methods, attributes, parents and roles

that a class does

�Use .^ to call methods on meta-class

my $meta = $trip.HOW;

my @methods = $trip.HOW.methods($trip);

my @methdos = $trip.^methods(); # same

Object Orientation, The Perl 6 Way

Calling Sets Of Methods

�Not sure if a class has a method, and

don't want an exception, but an undef

back instead?

�Can also use .* to call all methods of the

name (including those in super-classes)

and .+ to enforce that at least one

method will be called

$fp = $trip.?carbon_footprint($kms) // 0;

my @captures = $trip.+opinion;

Object Orientation, The Perl 6 Way

More Attribute Stuff

� I showed role attributes declared with

has, which are as if they were declared

in the class

�You can also declare role-private

attributes, invisible inside the class

�There are also class attributes –

essentially lexicals with accessors

my $!guts;

my @.instances;

Object Orientation, The Perl 6 Way

Rakudo OO
Implementation

Status

Object Orientation, The Perl 6 Way

Probably Not Half Way Yet

�Much progress has been made in

implementing the features shown today

� However, the Perl 6 object model is

pretty rich, so there's probably about this

much again worth of work to get the rest

of the features in

�Once we've got those features in, there

will also be some work to do on feature

interaction and edge cases

Object Orientation, The Perl 6 Way

Still Lots To Play With

�With many of the common things

implemented, there's plenty to play with

today

�Downloading and building Rakudo,

playing with it, breaking it and reporting

bugs helps

�Sending in a test case we can add to the

specification tests helps even more ;-)

Object Orientation, The Perl 6 Way

Thank You

Merci

D'akujem

Gracias

Danke

Tak

Dank je

Спасибо

Object Orientation, The Perl 6 Way

Questions?

