
Putting Types To Work

In Perl 6

Jonathan Worthington

YAPC::Europe 2008

Object Orientation, The Perl 6 Way

Types

Object Orientation, The Perl 6 Way

What Are Types?

�There's More Than One Way To Define

It (TMTOWTDI for theorists ;-))

�A common definition: a type classifies a
value (e.g. 42 is an integer, “monkey”

is a string...)

�Another definition: a type defines the

representation of and set of operations

that can be performed on a value

Object Orientation, The Perl 6 Way

Perl and Types

� In Perl 5, we've not tended to think so

much about types

�Of course, there are various container

types: scalars, arrays, hashes…

�Perl 6 introduces a much richer type

system

�You can use it to help you write safer

and possibly faster code, or you can

ignore it and it will stay out of the way

Object Orientation, The Perl 6 Way

.WHAT

Object Orientation, The Perl 6 Way

Values Know Their Types

�All values can be interrogated to find out

what their type is (including those stored

in variables) using the .WHAT macro

�Returns a proto-object (empty instance

of the class), which stringifies to the

short name of the type
say 42.WHAT; # Int

say "OH HAI".WHAT; # Str

say (1,2,3).WHAT; # List

say ("Beer" | "Vodka").WHAT; # Junction

Object Orientation, The Perl 6 Way

Values Know Their Types

� If you have defined your own class, then

it returns the proto-object for that
class Place {

has $.name;

has $.population is rw;

}

my $joppa = Place.new(

name => 'Joppa',

population => 10000

);

say $joppa.WHAT; # Place

say $joppa.name.WHAT; # Str

say $joppa.population.WHAT; # Int

Object Orientation, The Perl 6 Way

Type
Annotations &

Constraints

Object Orientation, The Perl 6 Way

Type Constraints

�Perl 6 allows you to specify a type when

declaring a variable

�The writing of types on variables is

called a type annotation

�Results in constraining what may be

stored in the variable

my Int $answer;

$answer = 42; # Assignment succeeds

$answer = "Ruby"; # Type check exception

is thrown

Object Orientation, The Perl 6 Way

Type Constraint Enforcement

�Perl 6 promises that the type constraints

will be enforced at runtime at latest

�However, in cases where compilers can

determine that an operation will always

fail due to type constraints at compile

time, it may give an error then too

�There will probably be various pragmas

(maybe not in 6.0.0) that let you trade in

dynamism for more compile-time checks

Object Orientation, The Perl 6 Way

Where To Use Annotations

�Type constraints can be applied to

�Variables (as shown already)

�Parameters on subs/methods (in the

future, on the return type too)

�Attributes in a class

sub add(Int $x, Int $y) { ... }

class Place {

has Str $.name;

has Int $.population is rw;

}

Object Orientation, The Perl 6 Way

Things that can
act as type
constraints

Object Orientation, The Perl 6 Way

Classes

�When you declare a class, you can use

its name as a type constraint

�You can then only assign things in an

"isa" relationship with that class to the

variable

�That is, you can assign an instance of a

subclass of the variable

�Safe because it can do at least the

operations of the parent class

Object Orientation, The Perl 6 Way

Classes – Example

�Declare some classes

�Results of various assignments

class Weapon { }

class AntiAircraftGun is Weapon { }

class Cannon is Weapon { }

class Chimp { }

my Weapon $x;

$x = AntiAircraftGun.new(); # ok

$x = Cannon.new(); # ok

my Cannon $y = Cannon.new(); # ok

$y = Weapon.new(); # exception

$y = Chimp.new(); # exception

Object Orientation, The Perl 6 Way

Chimps Are Not Cannons

isa

Object Orientation, The Perl 6 Way

A Common Idiom

�When you declare that a variable is of

the type of a certain class, then an

undefined value of it is the proto-object

for that class

�The .= operator calls a method on the

LHS and then assigns the return value

of the method call

�Together, we can instantiate a Chimp:
my Chimp $charlie .= new();

Object Orientation, The Perl 6 Way

Roles

�You can use roles as type constraints

also

� In this case, assignments will only

succeed if what is being assigned does

the role
role Amuse { }

class Chimp does Amuse { }

class SoftDrinksShop { }

my Amuse $thingy = Chimp.new(); # ok

$thingy = new SoftDrinksShop(); # exception

Object Orientation, The Perl 6 Way

A Chimp does Amuse…

Object Orientation, The Perl 6 Way

…but a soft drinks shop does not…

A pint of
ale,

please.

lolz, we
only has
the coke!

We are
not

amused.

Object Orientation, The Perl 6 Way

…usually.

Object Orientation, The Perl 6 Way

Refinement Types

�As well as classes and roles, you can

also introduce refinement types using
the subset keyword

�These take an existing type (possibly

another refinement type) and add some

additional constraints
subset EvenInt of Int where

{ $^n % 2 == 0 };

my EvenInt $n = 42; # ok

$n = 13; # exception

Object Orientation, The Perl 6 Way

Refinement Types

�Can declare anonymous refinement

types too

�For example, we can make a sub take

two lists of the same length
sub mix(List $a, List $b

where { $a.elems == $b.elems }) {

...

}

mix([1,2,3], [4,5,6]); # ok

mix([1,2,3], [4,5]); # exception

Object Orientation, The Perl 6 Way

Multiple
Dispatch

Object Orientation, The Perl 6 Way

TMTOWT(Dispatch)I

� In Perl 6, you can introduce multiple

routines (subs, methods) with the same

name, but taking a different number or

different types of parameters

�At dispatch time, the parameters you are

calling the routine with are used to

decide which is the best one to call

�Warning: implementation of this is

currently a work in progress

Object Orientation, The Perl 6 Way

Arity

�You use the multi keyword to specify

that a sub or method does multiple

dispatch (otherwise, you'd get a

redefinition warning/error)

�You can drop the sub if you wish

multi sub foo($a) { say "1 arg" }

multi sub foo($a, $b) { say "2 args" }

foo(42); # 1 arg

foo(39, 3); # 2 args

multi foo($a, $b, $c) { say "3 args" }

Object Orientation, The Perl 6 Way

Type

�As well as arity, you can distinguish

multi variants by having parameters of

different types
class Paper {}

class Scissors {}

class Stone {}

multi win(Paper $a, Stone $b) { 1 }

multi win(Scissors $a, Paper $b) { 1 }

multi win(Stone $a, Scissors $b) { 1 }

multi win(Any $a, Any $b) { 0 }

say win(Paper, Scissors); # 0

say win(Paper, Stone); # 1

Object Orientation, The Perl 6 Way

Candidate Ordering

�Candidates are examined in order of

type narrowness (for class/role types)

�Build a DAG of the candidates, with an

edge from A to B if A is narrower than B

�Narrower if one parameter is narrower

and the rest are narrower or tied

�Then produce a topological sort of it to

get the dispatch order

Object Orientation, The Perl 6 Way

Dispatch Algorithm

�Discard any candidates that could never

possibly work

�Search what's left in order; if there is

one unambiguous solution, call it

�Otherwise see if there are any subset

constraints we can choose by, then if

anything is marked as default

� If still ambiguous, call any proto; if there

is none, then the dispatch fails

Object Orientation, The Perl 6 Way

Multi-Methods

�Very similar to multi-subs

�We dispatch on the invocant and then

consider any multi variants

�A multi with identical types and arity

located in a subclass hides anything in

the superclass (for calls on instances of

the subclass)

multi method(Int $answer) { say $answer }

Object Orientation, The Perl 6 Way

Generic
Routines

Object Orientation, The Perl 6 Way

Type Variables

�Just as you have have variables holding

values, you can also have type variables

which hold types

�They have the sigil ::

�Can declare and scope them just as you

can any other variable, and use them

where you would write a type
my ::T = $condition ?? Foo !! Bar;

my $x = T.new()

Object Orientation, The Perl 6 Way

Generic Routines

�You can capture the type of a parameter

that is passed to a routine

�You can use it as a type constraint later

in the parameter list too (note only use
::T to bind it, then use T later)

sub foo(::T $x) { say "Got a " ~ T.WHAT; }

foo(4.2); # Got a Num

foo("OH HAI"); # Got a Str

sub foo(::T $x, T $y) { }

foo("OH HAI", "KPLZTHNXBYE"); # ok

foo("OH HAI", 42"); # exception

Object Orientation, The Perl 6 Way

Status

Object Orientation, The Perl 6 Way

What's Implemented

� .WHAT to get the type of something

�Enforcement of type constraints (class,

role and subset) on variables, attributes

and parameters

�Declaration of refinement types with the

subset keyword

�Type variables and generic routines

�Arity based multi-subs

Object Orientation, The Perl 6 Way

Work In Progress

�Type based multi-subs (we have a very

preliminary implementation, but not

using the correct algorithm and it doesn't

work with roles or refinement types)

�Truly supporting multi-methods (we

don't handle overrides correctly yet)

�The is default trait

�Declaring proto subs

Object Orientation, The Perl 6 Way

Things Hopefully For Later This Year

�Type-parametric roles

�You can make roles take type and

value parameters

�Then can choose the correct role

based upon what types/values you

supply when doing it

�Same dispatch algorithm as for multis

Object Orientation, The Perl 6 Way

Things For The More Distant Future

�These are not required for 6.0.0 but will

be good to have at some point

�Some static type analysis, to catch

obvious mistakes at compile time

(things that couldn't work at runtime)

�Optimisations based upon type

annotations and/or inferences

�Multi-dispatch on named parameters

and/or desired return type

Object Orientation, The Perl 6 Way

Thank You

Merci

D'akujem

Gracias

Danke

Tak

Dank je

Спасибо

Object Orientation, The Perl 6 Way

Questions?

