
The Perl 6
Express

Jonathan Worthington
Belgian Perl Workshop 2009

The Perl 6 Express

About This Talk

�A look at some of the changes and new

features in Perl 6, the next version of

the Perl programming language that is

currently in development

�Tries to cover the stuff you most need

to know

�Sticks to code that you can run on a

Perl 6 implementation today (Rakudo)

The Perl 6 Express

A Little
Background

What is Perl 6?

�Perl 6 is a ground-up re-design and re-

implementation of the language

�Not backward compatible with Perl 5

�Opportunity to add, update and fix

many things

�There will be a code translator and

you will be able to use many Perl 5

modules from Perl 6

The Perl 6 Express

Language vs. Implementation

� In Perl 5, there was only one

implementation of the language

�Other languages have many choices

�Perl 6 is the name of the language, but

not of any particular implementation

(just like C)

�Various implementation efforts

underway

The Perl 6 Express

Rakudo

�An implementation of Perl 6 on the

Parrot Virtual Machine

�VM aiming to run many dynamic

languages and allow interoperability

between them

� Implemented partly in NQP (a subset of

Perl 6), partly in Perl 6 (some built-ins),

partly in Parrot Intermediate Language

and a little bit of C

The Perl 6 Express

Why "Rakudo"?

�Suggested by Damian Conway

�Some years ago, Con Wei Sensei

introduced a new martial art in Japan

named "The Way Of The Camel"

� In Japanese, this is "Rakuda-do"

�The name quickly became abbreviated

to "Rakudo", which also happens to

mean "paradise" in Japanese

The Perl 6 Express

How To Build Rakudo

�Clone the source from GIT

git://github.com/rakudo/rakudo.git

�Build it (builds Parrot for you):

�Run it on the command line, with a

script or in interactive mode

perl Configure.pl --gen-parrot

make perl6

perl6 –e "say 'Hello, world!'"

perl6 script.p6

perl6

The Perl 6 Express

Rakudo Progress

The Perl 6 Express

7000+
passing

specification

tests

Variables

The Perl 6 Express

Declaring Variables

�As in Perl 5, declare lexical variables
with my

�Unlike in Perl 5, by default you must

declare your variables (it's like having
use strict on by default)

�You can also use our for package

variables, just like in Perl 5

my $answer = 42;

my $city = 'Sofia';

my $very_approx_pi = 3.14;

The Perl 6 Express

Sigils

�All variables have a sigil

�Unlike in Perl 5, the sigil is just part of
the name ($a[42] is now @a[42]).

�The sigil defines a kind of "interface

contract" – promises about what you

can do with this variable

�Anything with @ sigil can be indexed

into positionally, using […]

The Perl 6 Express

Arrays

�Hold zero or more elements and allow

you to index into them with an integer
Declare an array.

my @scores;

Or initialize with some initial values.

my @scores = 52,95,78;

my @scores = <52 95 78>; # The same

Get and set individual elements.

say @a[1]; # 95

@a[0] = 100;

say @a[0]; # 100

The Perl 6 Express

Hashes

�Hold zero or more elements, with keys

of any type
Declare a hash.

my %ages;

Set values.

%ages<Fred> = 19; # Constant keys

my $name = 'Harry';

%ages{$name} = 23; # More complex ones

Get an individual element.

say %ages<Harry>; # 23

The Perl 6 Express

The Perl 6 Express

Iteration

The for Loop To Iterate

� In Perl 6, the for loop is used to iterate

over anything that provides an iterator

�By default, puts the variable into $_

�The following example will print all of the
elements in the @scores array

my @scores = <52 95 78>;

for @scores {

say $_;

}

The Perl 6 Express

The for Loop To Iterate

�Anything between { … } is just a block

� In Perl 6, a block can take parameters,
specified using the -> syntax

�Here, we are naming the parameter to

the block that will hold the iteration

variable

my @scores = <52 95 78>;

for @scores -> $score {

say $score;

}

The Perl 6 Express

The for Loop To Iterate

� .kv method of a hash returns keys and

values in a list

�A block can take multiple parameters,

so we can iterate over the keys and

values together
my %ages = (Fred => 45, Bob => 33);

for %ages.kv -> $name, $age {

say "$name is $age years old";

}

The Perl 6 Express

Fred is 45 years old

Bob is 33 years old

The loop Loop

�The for loop is only for iteration now;

for C-style for loops, use the loop

keyword

�Bare loop block is an infinite loop

loop (my $i = 1; $i <= 42; $i++) {

say $i;

}

loop {

my $cur_pos = get_position();

update_trajectory($target, $cur_pos);

}

The Perl 6 Express

The Perl 6 Express

Conditionals

The if Statement

�You can use the if…elsif…else style

construct in Perl 6, as in Perl 5

�However, you can now omit the

parentheses around the condition

if $foo == 42 {

say "The answer!";

} elsif $foo == 0 {

say "Nothing";

} else {

say "Who knows what";

}

The Perl 6 Express

Chained Conditionals

�Perl 6 supports "chaining" of

conditionals, so instead of writing:

You can just write:

if $roll >= 1 && $roll <= 6 {

say "Valid dice roll"

}

if 1 <= $roll <= 6 {

say "Valid dice roll"

}

The Perl 6 Express

Chained Conditionals

�You are not limited to chaining just two

conditionals

�Here we check that both roles of the

dice gave the same value, and that both

of them are squeezed between 1 and 6,

inclusive

if 1 <= $roll1 == $roll2 <= 6 {

say "Doubles!"

}

The Perl 6 Express

Subroutines

The Perl 6 Express

Parameters

�You can write a signature on a sub

�Specifies the parameters that it expects

to receive

�Unpacks them into variables for you
sub order_beer($type, $how_many) {

say "$how_many pints of $type, please";

}

order_beer('Leffe', 5);

The Perl 6 Express

5 pints of Leffe, please

Auto-Referencing

�Arrays and hashes can be passed

without having to take references to

prevent them from flattening
sub both_elems(@a, @b) {

say @a.elems;

say @b.elems;

}

my @x = 1,2,3;

my @y = 4,5;

both_elems(@x, @y);

The Perl 6 Express

3

2

Optional Parameters

�Parameters can be optional

�Write a ? after the name of the

parameter to make it so

�Alternatively, give it a default value

sub speak($phrase, $how_loud?) { ... }

sub greet($name, $greeting = 'Ahoj') {

say "$greeting, $name";

}

greet('Zuzka'); # Ahoj, Zuzka

greet('Anna', 'Hallo'); # Hallo, Anna

The Perl 6 Express

Named Parameters

�Named parameters are also available

�Optional by default; use ! to require

sub catch_train(:$number!, :$car, :$place) {

my $platform = find_platform($number);

walk_to($platform);

find_place($car, $place);

}

catch_train(

number => '005',

place => 23

car => 5,

);

The Perl 6 Express

Slurpy Parameters

�For subs taking a variable number of

arguments, use slurpy parameters

�Use *%named for named parameters

sub say_double(*@numbers) {

for @numbers {

say 2 * $_;

}

}

say_double(); # No output

say_double(21); # 42\n

say_double(5,7,9); # 10\n14\n18\n

The Perl 6 Express

Object
Orientation

The Perl 6 Express

Everything Is An Object

�You can treat pretty much everything as

an object if you want

�For example, arrays have an elems

method to get the number of elements

�Can also do push, pop, etc. as methods

my @scores = <52 95 78>;

say @scores.elems; # 3

@scores.push(88);

say @scores.shift; # 52

The Perl 6 Express

Classes

�Basic class definitions in Perl 6 are not

so unlike many other languages

�Attributes specifying state

�Methods specifying behaviour
class Dog {

has $.name;

has @!paws;

method bark() {

say "w00f";

}

}

The Perl 6 Express

Attributes

�All attributes are named $!foo (or

@!foo, %!foo, etc)

�Declaring an attribute as $.foo

generates an accessor method

�Adding is rw makes it a mutator

method too
has $!brain; # Private

has $.color; # Accessor only

has $.name is rw; # Accessor and mutator

The Perl 6 Express

Inheritance

�Done using the is keyword

�Multiple inheritance also possible

class Puppy is Dog {

method bark() { # an override

say "yap";

}

method chew($item) { # a new method

$item.damage;

}

}

class Puppy is Dog is Pet { … }

The Perl 6 Express

Delegation

�The handles keyword specifies that

an attribute handles certain methods

�You can use pairs to rename them

�Really all the compiler is doing is

generating some "forwarder" methods

for you

has $!brain handles 'think';

has $!mouth handles <bite eat drink>;

has $!brain handles :think('use_brain')

The Perl 6 Express

Proto-objects

�When you declare a class, it installs a

prototype object in the namespace

�Somewhat like an "empty" instance of

the object

�You can call methods on it which don't

depend on the state; for example, the

new method to create a new instance:
my $fido = Dog.new();

The Perl 6 Express

Instantiation

�When you instantiate an object you can

also specify initial attribute values
my $pet = Puppy.new(

name => 'Rosey',

color => 'White'

);

The Perl 6 Express

Instantiation

�When you instantiate an object you can

also specify initial attribute values
my $pet = Puppy.new(

name => 'Rosey',

color => 'White'

);

w00f

The Perl 6 Express

Instantiation

�When you instantiate an object you can

also specify initial attribute values
my $pet = Puppy.new(

name => 'Rosey',

color => 'White'

);

w00f Perl 6 rocks!

The Perl 6 Express

Metaclasses

�There is no Class class

�A proto-object points to the metaclass,

making it available through the .HOW

(Higher Order Workings) macro

�This allows for introspection (getting a

list of its methods, attributes, parents,

roles that it does and so forth – all of

which can be further introspected)

The Perl 6 Express

Basic I/O

The Perl 6 Express

File Handle Objects

� I/O is now much more OO

�The open function will now return an IO

object, which you call methods on to do

input/output

�open takes a named parameter to

specify the mode
my $fh = open("foo.txt", :r); # read

my $fh = open("foo.txt", :w); # write

my $fh = open("foo.txt", :rw); # read/write

my $fh = open("foo.txt", :a); # append

The Perl 6 Express

Iterating Over A File

�Use the for loop to iterate over the file

handle, and the prefix = operator to get

an iterator from the file handle

�Note that this auto-chomps: new line

characters are removed from $line

my $fh = open("README", :r);

for =$fh -> $line {

say $line;

}

$fh.close();

The Perl 6 Express

Writing To A File

�To write to a file, just call the print and

say methods on the file handle object
my $fh = open("example.txt", :w);

for 1..10 -> $i {

$fh.say($i);

}

$fh.close();

The Perl 6 Express

Standard Handles

�STDIN is available as the global $*IN,

STDOUT as $*OUT and STDERR as

$*ERR

�They are just file handle objects, so it's

possible to call methods on them to

read/write with them

The Perl 6 Express

print "Your name is: ";

my $name = $*IN.readline;

say "Hi, $name!";

A Couple Of Handy Functions

�The slurp function lets you read an

entire file into a scalar

�The prompt function prints the given

message, then takes input from STDIN

The Perl 6 Express

my $name = prompt "Your name is: ";

say "OH HAI, { $name.uc }!";

my $content = slurp("data.txt");

The Perl 6 Express

Types

The Perl 6 Express

Types

� In Perl 6, values know what kind of

thing they are

� Including your own classes

say 42.WHAT; # Int

say "beer".WHAT; # Str

sub answer { return 42 }

say &answer.WHAT; # Sub

class Dog { … }

my $fido = Dog.new();

say $fido.WHAT; # Pes

The Perl 6 Express

Typed Variables

�We can refer to types in our code by

name

�For example we can declare a variable

can only hold certain types of thing

�Again, this works with types you have

defined in your own code too

my Int $x = 42; # OK, 42 isa Int

$x = 100; # OK, 100 isa Int

$x = "CHEEZBURGER"; # Error

The Perl 6 Express

Typed Parameters

�Types can also be written in signatures

to constrain what types of parameters

can be passed
sub hate(Str $thing) {

say "$name, you REALLY suck!";

}

hate("black hole"); # OK

hate(42); # Type check failure

The Perl 6 Express

Introducing Subtypes

� In Perl 6, you can take an existing type

and "refine" it

�Pretty much any condition is fine

�The condition will then be enforced per

assignment to the variable
my PositiveInt $x = 5; # OK

$x = -10; # Type check failure

subset PositveInt of Int where { $_ > 0 }

The Perl 6 Express

Introducing Subtypes

�Like other types, you can use them on

subroutine parameters

�You can also write an anonymous

refinement on a sub parameter
sub divide(Num $a,

Num $b where { $^n != 0 }) {

return $a / $b;

}

say divide(126, 3); # 42

say divide(100, 0); # Type check failure

Multiple
Dispatch

The Perl 6 Express

The Perl 6 Express

Multiple Dispatch

�Earlier we saw that routines in Perl 6

can now have signatures

� In Perl 6, you can write multiple

routines with the same name, but

different signatures

�We let the runtime engine analyse the

parameters that we are passing and

call the best routine (known as the best

candidate).

The Perl 6 Express

Dispatch By Arity

�Arity = number of arguments that a

routine takes

�Choose by number of parameters
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

The Perl 6 Express

Dispatch By Arity

�Arity = number of arguments that a

routine takes

�Choose by number of parameters
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

1

The Perl 6 Express

Dispatch By Arity

�Arity = number of arguments that a

routine takes

�Choose by number of parameters
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

2

The Perl 6 Express

Type-Based Dispatch

�We can also use the types of

parameters to help decide which

candidate to call
multi sub double(Num $x) {

return 2 * $x;

}

multi sub double(Str $x) {

return "$x $x";

}

say double(21); # 42

say double("hej"); # hej hej

The Perl 6 Express

Type-Based Dispatch

�Paper/Scissor/Stone is easy now
class Paper { }

class Scissor { }

class Stone { }

multi win(Paper $a, Stone $b) { 1 }

multi win(Scissor $a, Paper $b) { 1 }

multi win(Stone $a, Scissor $b) { 1 }

multi win(Any $a, Any $b) { 0 }

say win(Paper.new, Scissor.new); # 0

say win(Stone.new, Stone.new); # 0

say win(Paper.new, Stone.new); # 1

The Perl 6 Express

Subtypes In Multiple Dispatch

� In multiple dispatch, subtypes act as

"tie-breakers"

�First, we narrow down the possible

candidates based upon the role or

class they expect the parameter to

inherit from or do

�Then, if we have multiple candidates

left, we use the subtypes to try and

pick a winner

The Perl 6 Express

Subtypes In Multiple Dispatch

�Here is an example of using subtypes

to distinguish between two candidates
multi say_short(Str $x) {

say $x;

}

multi say_short(Str $x

where { .chars >= 12 }) {

say substr($x, 0, 10) ~ '...';

}

say_short("Beer!"); # Beer!

say_short("BeerBeerBeer!"); # BeerBeerBe...

The Perl 6 Express

Dispatch Failures

�Multiple dispatch can fail in a couple of

ways

�When all candidates have been

considered, and none of them accept

the parameters we have passed

�When we have two or more

candidates that accept the

parameters and have no way to

decide which one is better

The Perl 6 Express

No Applicable Candidates

�The following program will give an error

saying that there are no applicable

candidates
multi sub double(Num $x) {

return 2 * $x;

}

multi sub double(Str $x) {

return "$x $x";

}

double(1..10); # 1..10 is a Range object

The Perl 6 Express

Ambiguous Candidates

�This one fails due to ambiguity

�But helpfully tells you what conflicted

multi sub say_sum(Num $x, Int $y) {

say $x + $y;

}

multi sub say_sum(Int $x, Num $y) {

say $x + $y;

}

say_sum(15, 27);

Ambiguous dispatch to multi 'say_sum'.

Ambiguous candidates had signatures:

:(Num $x, Int $y)

:(Int $x, Num $y)

The Perl 6 Express

Exceptions

The Perl 6 Express

CATCH

�Can write a CATCH block within any

other block (not just try; like Perl 5's

eval block, it catches all exceptions)

�Catches exceptions that occur inside

that block
try {

die "omg!";

CATCH {

say "wtf?"

}

}

The Perl 6 Express

$!

�As in Perl 5, $! is still related to error

handling

� Is a kind of exception object, though

can stringify it
try {

die "omg";

CATCH {

say $! ~ "wtfbbq" # omgwtfbbq

}

}

The Perl 6 Express

Junctions

Junctions

�How often do you find yourself writing

things like:

�With junctions we can write this as:

�"wine" | "beer" is a junction

if $drink eq 'wine' || $drink eq 'beer' {

say "Don't get drunk on it!";

}

if $drink eq 'wine' | 'beer' {

say "Don't get drunk on it!";

}

The Perl 6 Express

What are junctions?

�A junction can be used anywhere that

you would use a single value

�You store it in a scalar

�But, it holds and can act as many values

at the same time

�Different types of junctions have

different relationships between the

values

The Perl 6 Express

Constructing Junctions From Arrays

�You can construct junctions from arrays
if all(@scores) > $pass_mark {

say "Everybody passed!";

}

if any(@scores) > $pass_mark {

say "Somebody passed";

}

if one(@scores) > $pass_mark {

say "Just one person passed";

}

if none(@scores) > $pass_mark {

say "EPIC FAIL";

}

The Perl 6 Express

Junction Auto-Threading

� If you pass a junction as a parameter

then by default it will auto-thread

�That is, we will do the call once per item

in the junction
sub example($x) {

say "called with $x";

}

example(1|2|3);

The Perl 6 Express

called with 1

called with 2

called with 3

Junction Auto-Threading

�The default parameter type is Any

�However, this is not the "top" type – that

is Object

�Junction inherits from Object, not Any

The Perl 6 Express

Junction Auto-Threading

�The default parameter type is Any

�However, this is not the "top" type – that

is Object

�Junction inherits from Object, not Any
sub example(Junction $x) {

say "called with " ~ $x.perl;

}

example(1|2|3);

example(42);

The Perl 6 Express

called with any(1, 2, 3)

Parameter type check failed for $x in call to example

Junction Auto-Threading

�The default parameter type is Any

�However, this is not the "top" type – that

is Object

�Junction inherits from Object, not Any
sub example(Object $x) {

say "called with " ~ $x.perl;

}

example(1|2|3);

example(42);

The Perl 6 Express

called with any(1, 2, 3)

called with 42

Junction Auto-Threading

�The return value that you get maintains

the junction structure

�We thread the leftmost all or none

junction first, then leftmost any or one

sub double($x) {

return $x * 2;

}

my $x = double(1 | 2 & 3);

say $x.perl;

The Perl 6 Express

any(2, all(4, 6))

Meta-Operators

The Perl 6 Express

The Perl 6 Express

Reduction Operators

�Takes an operator and an array

�Acts as if you have written that operator

between all elements of the array
Add up all values in the array.

my $sum = [+] @values;

Compute 10 factorial (1 * 2 * 3 * … * 10)

my $fact = [*] 1..10;

Check a list is sorted numerically.

if [<=] @values { … }

The Perl 6 Express

Hyper Operators

�Takes an operator and does it for each

element in an array, producing a new

array.

�Point "sharp end" outwards to replicate

last element if needed

my @a = 1,2,3;

my @b = 4,5,6;

my @c = @a >>+<< @b; # 5 7 9

my @d = @a >>*<< @b; # 4 10 18

my @e = @a >>+>> 1; # 2 3 4

The Perl 6 Express

Cross Operators

�Alone, produces all possible

permutations of two or more lists

�Can also take an operator and use it to

combine the elements together in some

way, e.g. string concatenation
say (@a X~ @b).perl; # ["1a", "1b",

"2a", "2b"]

my @a = 1,2;

my @b = 'a', 'b';

say (@a X @b).perl; # ["1", "a", "1", "b",

"2", "a", "2", "b"]

Regexes And
Grammars

The Perl 6 Express

What's Staying The Same

�You can still write regexes between

slashes

�The ?, + and * quantifiers

�??, +? and *? lazy quantifiers

�(…) is still used for capturing

�Character class shortcuts: \d, \w, \s

� | for alternations (but semantics are

different; use || for the Perl 5 ones)

The Perl 6 Express

Change: Literals And Syntax

�Anything that is a number, a letter or the

underscore is a literal

�Anything else is syntax

�You use a backslash (\) to make literals

syntax and to make syntax literals
/\<\w+\>/ # \< and \> are literals

\w is syntax

/foo_123/ # All literals

The Perl 6 Express

Change: Whitespace

�Now what was the x modifier in Perl 5

is the default

�This means that spaces don't match

anything – they are syntax
/abc/ # matches abc

/a b c/ # the same

The Perl 6 Express

Change: Quoting

�Single quotes interpret all inside them

as a literal (aside from \')

�Can re-write:

As the slightly neater:

�Spaces are literal in quotes too:

/\<\w+\>/

/'<' \w+ '>'/

/'a b c'/ # requires the spaces

The Perl 6 Express

Change: Grouping

�A non-capturing group is now written

as […] (rather than (?:…) in Perl 5)

�Character classes are now <[…]>; they

are negated with -, combined with + or

- and ranges are expressed with ..

/[foo|bar|baz]+/

/<[A..Z]>/ # uppercase letter...

/<[A..Z] - [AEIOU]>/ # ...but not a vowel

/<[\w + [-]]> # anything in \w or a -

The Perl 6 Express

Change: s and m

�The s and m modifiers are gone

�. now always matches anything,

including a new line character

�Use \N for anything but a new line

�^ and $ always mean start and end of

the string

�^^ and $$ always mean start and end

of a line

The Perl 6 Express

Matching

�To match against a pattern, use ~~

�Negated form is !~~

� $/ holds the match object; when used as a

string, it is the matched text

if $event ~~ /\d**4/ { ... }

if $event !~~ /\d**4/ { fail "no year"; }

my $event = "Bulgarian Perl Workshop 2009";

if $event ~~ /\d**4/ {

say "Held in $/"; # Held in 2009

}

The Perl 6 Express

Named Regexes

�You can now declare a regex with a

name, just like a sub or method

�Then name it to match against it:

regex Year { \d**4 }; # 4 digits

if $event ~~ /<Year>/ { ... }

The Perl 6 Express

Calling Other Regexes

�You can "call" one regex from another,

making it easier to build up complex

patterns and re-use regexes
regex Year { \d**4 };

regex Place { Bulgarian | Ukrainian };

regex Workshop {

<Place> \s Perl \s Workshop \s <Year>

};

regex YAPC {

'YAPC::' ['EU'|'NA'|'Asia'] \s <Year>

};

regex Event { <Workshop> | <YAPC> };

The Perl 6 Express

The Match Object

�Can extract the year from a list of event

names like this:
for @events -> $ev {

if $ev ~~ /<Event>/ {

if $/<Event><YAPC> {

say $/<Event><YAPC><Year>;

} else {

say $/<Event><Workshop><Year>;

}

} else {

say "$ev was not a Perl event.";

}

}

The Perl 6 Express

rule and token

�By default, regexes backtrack

�Not very efficient for building parsers

� If you use token or rule instead or

regex, it will not backtrack

�Additionally, rule will replace any

literal spaces in the regex with a call to
ws (<.ws>), which you can customize

for the thing you are parsing

The Perl 6 Express

Learning More

The Perl 6 Express

Where To Learn More

�The Rakudo Perl 6 implementation has

a site at

http://www.rakudo.org/

�The Parrot Website

http://www.parrot.org/

�The Parrot Blog recently had an 8-part

PCT tutorial posted

http://www.parrotblog.org/

The Perl 6 Express

Get Involved!

�Join the Parrot and/or Perl 6 compiler

mailing list

�Pop onto the IRC channel

�Get the source and start hacking

�Partial implementations of many

languages – come and help us get

your favorite one running on Parrot

�Or if you like C, lots of VM guts work

The Perl 6 Express

Thank you!

The Perl 6 Express

Questions?

The Perl 6 Express

