
Metamodels
The magic that makes
OO less magical

Jonathan Worthington
Bratislava.pm

OH HAI

Metamodels – the magic that makes OO less magical

Once upon a
time, I wrote a

class…

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomale);

}

}

}

…and things
were OK.

Metamodels – the magic that makes OO less magical

I thought my
work was
done and I
could go to

the bar,
but…

Metamodels – the magic that makes OO less magical

…then my class
started asking
me some hard

questions.

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

How was I
created?

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

What does it
mean to have
methods and
attributes?

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

What does it
mean to have

a parent?

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

Do all classes
behave the

same way I do?

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

What does it
mean to be a

class anyway?

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

What about
languages that
do OO without

classes?

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

while outside() {

self.sniff;

say("HAU HAU HAU!");

self.move(:pomaly);

}

}

}

…and can a
class drink
beer too?

Huh?!

Metamodels – the magic that makes OO less magical

But actually,
they are good

questions.

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

…

token package_declarator:class {

:my $*PKGDECL := 'class';

<sym> <package_def>

}

token package_declarator:grammar {

:my $*PKGDECL := 'grammar';

<sym> <package_def>

}

token package_declarator:role {

:my $*PKGDECL := 'role';

<sym> <package_def>

}

…

STD.pm

Metamodels – the magic that makes OO less magical

…

token package_declarator:class {

:my $*PKGDECL := 'class';

<sym> <package_def>

}

token package_declarator:grammar {

:my $*PKGDECL := 'grammar';

<sym> <package_def>

}

token package_declarator:role {

:my $*PKGDECL := 'role';

<sym> <package_def>

}

…

STD.pm

Roles and classes
have many things in
common (methods,

attributes, …)

Metamodels – the magic that makes OO less magical

grammar

==
class + inherit from
Grammar by default

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

My first cut:
just hardwire

the differences

Metamodels – the magic that makes OO less magical

My first cut:
just hardwire

the differences.

Metamodels – the magic that makes OO less magical

Make the easy
things easy and
the hard things

possible.

Metamodels – the magic that makes OO less magical

Declaring a class
in Perl 6

==
Easy! ☺☺☺☺

Metamodels – the magic that makes OO less magical

Adding a new
package type in

the future

==
Should be possible ����

Metamodels
to the rescue!

Metamodels – the magic that makes OO less magical

What is
"meta"?

Metamodels – the magic that makes OO less magical

Something
that describes

something
else.

Metamodels – the magic that makes OO less magical

Natural languages
can be used as

meta-languages.

The have words to
describe language.

Metamodels – the magic that makes OO less magical

Word
Sentence

Verb
Adjective

Case

Metamodels – the magic that makes OO less magical

Meta-class

==
something that

describes a class

Metamodels – the magic that makes OO less magical

Meta-objects

==
objects that we
use to describe

our object model

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

class Dog is Animal {

has $.name;

has $!brain;

method go_for_walk() {

…

}

}

my $meta := ClassHOW.new;

ClassHOW.add_attribute($meta, Attribute.new(

name => '$!name',

accessor => True

));

ClassHOW.add_attribute($meta, Attribute.new(

name => '$!brain',

accessor => False

));

ClassHOW.add_method($meta, 'go_for_walk', method () { … });

ClassHOW.add_parent($meta, Animal);

my $type_object := ClassHOW.compose($meta);

MOP

==
Meta-object Protocol

==
API our meta-objects

should implement

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

my $meta := ClassHOW.new;

ClassHOW.add_attribute($meta, Attribute.new(

name => '$!name',

accessor => True

));

ClassHOW.add_attribute($meta, Attribute.new(

name => '$!brain',

accessor => False

));

ClassHOW.add_method($meta, 'go_for_walk', method () { … });

ClassHOW.add_parent($meta, Animal);

$type_object := ClassHOW.compose($meta);

ClassHOW is just a class implementing a
bunch of methods related to building up a
class declaration, according to a standard

API (e.g. our Meta-object Protocol)

Metamodels – the magic that makes OO less magical

my $meta := RoleHOW.new;

ClassHOW.add_attribute($meta, Attribute.new(

name => '$!name',

accessor => True

));

ClassHOW.add_attribute($meta, Attribute.new(

name => '$!brain',

accessor => False

));

ClassHOW.add_method($meta, 'go_for_walk', method () { … });

ClassHOW.add_parent($meta, Animal);

my $type_object := ClassHOW.compose($meta);

Had I declared a role instead, this only
changes in one place. The differences

between classes and roles are
encapsulated in the meta-object.

GrammarHOW

==
just a subclass of

ClassHOW that sets
Grammar as the
default parent ☺☺☺☺

Metamodels – the magic that makes OO less magical

Metamodels – the magic that makes OO less magical

my %*HOW;

%*HOW<class> := 'ClassHOW';

%*HOW<grammar> := 'GrammarHOW';

%*HOW<role> := 'RoleHOW';

The parser has a hash of the
mappings from package

declarators to meta-classes.

You temporize and modify the
hash when declaring a sub-
language…and you're done.

Metamodels – the magic that makes OO less magical

The meta-class API also
includes methods for

introspection.
for Dog.^attributes -> $attr {

say "Class has attribute " ~ $attr.name;

}

for Dog.^methods(:local) -> $meth {

say "Class has method " ~ $meth.name;

}

Class has attribute $!name

Class has attribute $!brain

Class has method name

Class has method go_for_walk

Metamodels – the magic that makes OO less magical

We can also have sub-
protocols for defining

other bits of our
object model…

Metamodels – the magic that makes OO less magical

Attribute Sub-protocol

Defines how accessor
generation is done, and

allows for attribute
introspection.

Metamodels – the magic that makes OO less magical

Composition Sub-protocol

Defines how role
composition takes place

and how conflicts are
resolved.

Metamodels – the magic that makes OO less magical

Harder
Problems

Metamodels – the magic that makes OO less magical

Meta-circularity
(Solvable, just a little mind-bending ☺☺☺☺)

The metaclass should just
be a normal object that is

also described by a
metaclass. All metaclasses

are "first class", as such

Metamodels – the magic that makes OO less magical

Interoperability
(Difficult problem; topic of ongoing research)

What happens when I
inherit from something with

a different meta-class?

Can we get
incompatibilities?

Metamodels – the magic that makes OO less magical

Keeping It Sane

Want to try and avoid
limiting what's possible in

the future…

…without creating an
excessively complex object

meta-model.

Metamodels – the magic that makes OO less magical

Questions?

Metamodels – the magic that makes OO less magical

Ďakujem ☺☺☺☺

