
The Way To
Rakudo *

Jonathan Worthington
Italian Perl Workshop 2009

OH HAI

The Way To Rakudo *

Who Am I?

� Originally from England

� Now living in Bratislava, Slovakia

The Way To Rakudo *

Who Am I?

� Originally from England

� Now living in Bratislava, Slovakia

The Way To Rakudo *

About here-ish

What Do I Do?

The Way To Rakudo *

What Do I Do?

� Drink beer

The Way To Rakudo *

What Do I Do?

� Drink beer

� Travel

The Way To Rakudo *

What Do I Do?

� Drink beer

� Travel

� In my spare time from this…

� I'm one of the lead developers of Rakudo

� Work on implementation of the object

model, multiple dispatch, the type system,

signatures and other bits

� Currently also working on support for

using Perl 5 modules from Perl 6

The Way To Rakudo *

Perl 6

The Way To Rakudo *

What is Perl 6?

� Re-design and update of the Perl language

� Not syntactically backwards compatible

� Many changes, many new features, but

aims to still "feel like Perl"

� Perl 6 is not an implementation, but rather a

language specification

� Part of it is a written specification

� Part of it is a "specification test suite"

The Way To Rakudo *

Whirlpool Development

� Perl 6 isn't doing the waterfall model, but

instead the "whirlpool"

� Feedback from implementers and users

helps refine the language specification

� Pugs – the first implementation, but now

unmaintained – provided much feedback

� smop helps the object meta-model evolve

� Rakudo benefits from both of these, and has

led to many spec tweaks and clarifications

The Way To Rakudo *

The Way To Rakudo *

What is Rakudo?

� An in-progress implementation of the Perl 6

specification

� Targets the Parrot Virtual Machine at

present, but is architected in such a way that

it could target more backends in the future

� The most actively developed and most

widely used Perl 6 implementation

� Currently passing over 27,500 spectests

(about 72.5% of the suite)

The Way To Rakudo *

The Good News

� Very actively developed

� More than one person understands the guts

� Some developers have funding, to help

things progress faster

� Growing module eco-system, and the early

stages of module installation tools

� So far, 22 monthly development releases

have been made

The Way To Rakudo *

The Problem

� Rakudo needs applications and modules

written for it

� They exercise Rakudo in ways that a test

suite does not, uncovering bugs

� They provide essential feedback on where

the language specification is weak and/or

needs tweaks

� However, few people will use Rakudo if we

keep on making "development releases"

The Way To Rakudo *

Therefore…

� In Q2 2010, the Rakudo team will make a

major, usable, useful release of Rakudo

� An implementation of a significant subset of

the Perl 6 language specification

� Focus on nailing down things that will have a

big semantic influence on your program

� Focus on delivering something people will

feel is a tool rather than a toy

� The name: Rakudo * (Rakudo Star)

The Way To Rakudo *

What does Rakudo
do today?

The Way To Rakudo *

The Basic Stuff

� Scalars, arrays, hashes…

� All of the basic operators

� Loops

� Conditionals (including chained: 1 < $x < 10)

� given/when (like a switch statement, and as

seen in 5.10)

� Most of the built-ins that you just expect to

be there (grep, map, push, abs, rand, sin…)

The Way To Rakudo *

Object Orientation

� Rakudo now has significant coverage of the

object oriented parts of Perl 6

� Classes (with methods, attributes,

inheritance, delegation, etc)

� Roles (for composition and as mix-ins)

� Parametric roles

� Introspection parts of the meta-model

� Various fancy forms of method dispatch,

including deferal

The Way To Rakudo *

Multiple Dispatch

� Choose what to call based on the signature

(both arity and types)

� Rakudo has good and mostly complete

support for multiple dispatch

� Many primitives in Rakudo already built on

top of multiple dispatch (e.g. traits)

� Operator overloading is expressed in terms

of multiple dispatch, and working

The Way To Rakudo *

Junctions

� Junctions allow many values to act like one

� Auto-threading of junctions works, both for

operators and for subs/methods

The Way To Rakudo *

if $dice_roll == 2|4|6 { say "even" }

while $a & $b > 0 {

...

}

Grammars

� Perl 6 Grammars allow for powerful parsing

� Like regexes on steroids – you now have full

grammar capabilities built right into the

language

� Rakudo uses this same grammar engine to

parse Perl 6, which is great ☺

� But we're far from the standard grammar at

the moment �

The Way To Rakudo *

The way to

Rakudo *

The Way To Rakudo *

Using STD

� When Rakudo * is released, we aim to be

using the standard grammar or something

very close to it

� Patrick Michaud is making great progress on

a grammar engine re-write that supports a

lot of what we're missing; we will integrate it

into Rakudo during the next month, and

move to a much more STD.pm-ish grammar

� Parsing performance will improve as a result

of this too

The Way To Rakudo *

Signature Handling

� On Monday, work on a new signature binder

was merged into master

� Gave some great performance wins (method

dispatch benchmark ~4x faster, operator

dispatch benchmark ~3x times faster)

� Also added some missing features and fixed

many bugs

� Way ahead: optimization, more testing and

tuning, and building other missing features

on top of it (e.g. nested signatures)

The Way To Rakudo *

Laziness

� In Perl 6, lists are lazy by default

� At the moment, Rakudo completely lacks

support for lazy lists �

� Since having eager vs lazy semantics

affects program behaviour, we want to have

it in place by Rakudo *

� The one bit of good news: grep, map and

more already use gather/take construct, so

will automatically become lazy when

gather/take is made lazy

The Way To Rakudo *

Module Installation

� Won't have something so rich and complete

as CPAN today…

� …but at least some support for installing

modules

� Various efforts are underway on this already

� The Plumage project is producing a

Parrot-level solution

� Proto has been around for a little while

and continues to evolve

The Way To Rakudo *

Perl 5 Integration

� Aim to have at least basic support for using

Perl 5 modules from Rakudo

� Blizkost is a project to take the Perl 5

interpreter, embed it and wrap the standard

Parrot compiler interface around it

� Gives Rakudo + other Parrot languages

access to the CPAN

� Have had some basic bits working already ☺

� But ignored for the last few weeks…oops �

The Way To Rakudo *

What will
likely be

missing in
Rakudo *?

The Way To Rakudo *

Rakudo * Might Not Be Fast

� Focus has been on completeness first

� Even with recent improvements, Rakudo is

still not particularly fast

� We expect to improve performance between

now and Rakudo * (aided by the Parrot team

recently producing profiling tools, which will

help show up our bottlenecks)

� Rakudo * should be fast enough for tasks

that are not runtime performance-critical

The Way To Rakudo *

Concurrency Support Comes Later

� Perl 6 specifies many opportunities for

concurrency, and is designed with being

able to be efficiently parallelizable in mind

� There's some specification work on various

concurrency primitives, but they need

fleshing out and real world testing

� Rakudo * will most probably not be able to

provide support for concurrency

The Way To Rakudo *

Advanced Data-structures Still To-do

� Rakudo * will likely be missing most, if not all

of the following:

� Compact arrays

� Compact structures

� User defined array indexing

� PDL support

The Way To Rakudo *

Why will these be missing?

� Partly lack of resources

� More importantly, the design still needs input

based on real world use cases

� Rakudo * is a necessary step to getting them

The Way To Rakudo *

Building the
paths to Perl 6

The Way To Rakudo *

Making Perl 6 Accessible

� Right now, Rakudo is mostly used by those

with some interest in Perl 6 development

� Rakudo * aims to make it more accessible

� It's a little like people visiting a mountain…

The Way To Rakudo *

Climb it yourself…

The Way To Rakudo *

Climb It Yourself

� Only appealing to a relatively small group of

people

� Risky…

� Still quite a few bugs lurking

� Still kinda slow

� But, when it works out, rewarding – people

are already creating some beautiful code

using Perl 6

� This is where the Rakudo compiler is today

The Way To Rakudo *

Take a flight…

The Way To Rakudo *

Take A Flight

� Much easier = many more people can do it

� You can enjoy the mountain…

� …though you know that standing on it would

be better still

� This is where Rakudo * is aiming at

The Way To Rakudo *

The train to the top

The Way To Rakudo *

The train to the top

� Very accessible

� Even works for those with a fear of flying

(e.g. early adoption)

� You're on the mountain

� But it takes a lot of time and effort to build

� Having had more people visit in other ways

helps those doing the building to know

where the pitfalls are and deal with the

earlier

The Way To Rakudo *

A step on the journey

� Rakudo * isn't all of Perl 6

� However, it is a significant step towards it

� Delivers many of the features and

improvements that the Perl 6 project has

promised

� Enough of Perl 6 to be useful to many

� But we know it won't be for everyone

The Way To Rakudo *

The Way To Rakudo *

Want to help us build

the path to Rakudo *?

How to get involved

� Write modules and applications

� Report the bugs you encounter

� If something felt like it was harder work

than it should have been, or if there seems

to be a corner-case missed, report that too

� The spec test suite always needs work

� For more see: www.perl6.org

� Hang out on the friendly Perl 6 IRC channel:

irc.freenode.org #perl6

The Way To Rakudo *

The Way To Rakudo *

Rakudo *
Q2 2010

www.rakudo.org

