
Perl 6 Roles
In Depth

Jonathan Worthington
YAPC::Europe 2009

OH HAI

Hola!

Salut!Ahoj!

Привет!

Hej hej!

Hi!

Ciao!Olá!

.WHO?

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

�Rakudo Perl 6 and Parrot hacker

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

�Rakudo Perl 6 and Parrot hacker

�Travel all over the place

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

�Rakudo Perl 6 and Parrot hacker

�Travel all over the place

�Usually hack to heavy metal

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

�Rakudo Perl 6 and Parrot hacker

�Travel all over the place

�Usually hack to heavy metal

�Good beer makes me happy

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

�Rakudo Perl 6 and Parrot hacker

�Travel all over the place

�Usually hack to heavy metal

�Good beer makes me happy

�Acrostics are awesome

Perl 6 Roles In Depth

Me

�Programming Perl since 2001ish

�Originally from UK, now live in Slovakia

�Rakudo Perl 6 and Parrot hacker

�Travel all over the place

�Usually hack to heavy metal

�Good beer makes me happy

�Acrostics are awesome

�LOL

Perl 6 Roles In Depth

Roles

Perl 6 Roles In Depth

Roles
Right at the

heart of Perl 6

Perl 6 Roles In Depth

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Perl 6 Roles In Depth

So what is a role anyway?

�A collection of zero or more…

�Methods

�Attributes

�Unlike a class, can not be instantiated

(if you try, a class is generated for you)

�Classes in Perl 6 are mutable (with the

right pragma in force, can be monkey-

typed), whereas roles are immutable

Perl 6 Roles In Depth

What does a role look like?

� Introduced with the role keyword

�Methods and attributes declared just as

they would be in a Perl 6 class

Perl 6 Roles In Depth

What does a role look like?

� Introduced with the role keyword

�Methods and attributes declared just as

they would be in a Perl 6 class
role DebugLog {

...

}

Perl 6 Roles In Depth

What does a role look like?

� Introduced with the role keyword

�Methods and attributes declared just as

they would be in a Perl 6 class
role DebugLog {

has @.log_lines;

...

}

Perl 6 Roles In Depth

What does a role look like?

� Introduced with the role keyword

�Methods and attributes declared just as

they would be in a Perl 6 class
role DebugLog {

has @.log_lines;

has $.log_size is rw = 100;

...

}

Perl 6 Roles In Depth

What does a role look like?

� Introduced with the role keyword

�Methods and attributes declared just as

they would be in a Perl 6 class
role DebugLog {

has @.log_lines;

has $.log_size is rw = 100;

method log_message($message) {

...

}

}

Perl 6 Roles In Depth

What does a role look like?

� Introduced with the role keyword

�Methods and attributes declared just as

they would be in a Perl 6 class
role DebugLog {

has @.log_lines;

has $.log_size is rw = 100;

method log_message($message) {

@!log_lines.shift if

@!log_lines.elems >= $!log_size;

@!log_lines.push($message);

}

}

Perl 6 Roles In Depth

Role Composition

�A role is composed into a class using

the does trait

�This adds the methods and attributes to

the class

�End result is as if they had been written

inside the class in the first place

class WebCrawler does DebugLog {

...

}

Perl 6 Roles In Depth

Mix-ins

�Allow the functionality of a role to be

added on a per-object basis (whereas

compile time composition works on a

per-class basis)

�Does not affect any other instances of

the class

�Methods from the role always override

any existing methods the object has

Perl 6 Roles In Depth

Mix-ins Example

�Suppose we want to trace what

happens to a certain object

�Mix in the DebugLog role

�Later, we can output the lines that were

logged

$account does DebugLog;

$account.log_lines>>.say;

Perl 6 Roles In Depth

Mix-ins Example

�Now we just need to add calls to the

log_message method

�We can do this with the .? operator,

which calls the method if it exists

class Account {

method change_password($new) {

self.?log_message(

"changing password to $new");

...

}

}

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Perl 6 Roles In Depth

Sigil = Interface Contract

� In Perl 6, a sigil implies an interface

contract

�This interface contract is defined by a

role

�You can only put things into a variable

with that sigil if it does the required role

�Exception: variables with the $ sigil can

store anything (if not type-constrained)

Perl 6 Roles In Depth

@ = Positional

�The @ sigil implies the Positional role

�Promises that there will be a method

postcircumfix:<[]> that you can call

�This is that gets called when you do an

index positionally into something

�Note: optimizer (when we have one)

may emit something more lightweight

say @fact[1];

say @fact.postcircumfix:<[]>(1);

Perl 6 Roles In Depth

% = Associative

�The % sigil implies the Associative role

�Promises that there will be a method

postcircumfix:<{ }> that you can call

�This is that gets called when you do an

index associatively into something
say %price<Cheese>;

say %price.postcircumfix:<{ }>('Cheese');

Perl 6 Roles In Depth

& = Callable

�The & sigil implies the Callable role

�Promises that the thing can be invoked

�This role is done by things like Block,

Sub, Method and so forth

�Will be able to do this role in your own

types (not yet supported in Rakudo)

�Requires that the method

postcircumfix:<()> is implemented

Perl 6 Roles In Depth

Aside: Multiple Dispatch

�Since a sigil implies the doing of a role,

you can use them in the signature of a

multi-sub
multi what_is($it) { say "It's a scalar" }

multi what_is(@it) { say "It's an array" }

multi what_is(%it) { say "It's a hash" }

multi what_is(&it) { say "It's code" }

what_is([1,2,3]); # It's an array

what_is({ x => 4, y => 2 });# It's a hash

what_is(-> $x { 2 * $x }); # It's code

what_is(42); # It's a scalar

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Perl 6 Roles In Depth

Parametric Roles

�So far, we have seen roles as units of

functionality that we can compose into

a class or mix in to an existing object

�A role can also take parameters

�Allow for customization of the role's

behaviour on a per-use basis

� In the problem space of C++ templates,

C#/Java Generics, System F, etc.

Perl 6 Roles In Depth

Parametric Roles

�Role parameters go in square brackets

after the role name

�What goes between the square

brackets is a signature, just like with a

sub/method.

role Can[::Contents] {

method top_up(Contents $substance) {

say "Yay...more {Contents.perl}!";

}

}

Perl 6 Roles In Depth

Parametric Roles

�To do a parametric role, pass the

parameters in square brackets

� It's much like doing a sub call

�Part of the type name; Can[Beer] is a

different type to Can[Coke].

class Beer { }

class Coke { }

my Can[Beer] $starobrno .= new;

$starobrno.top_up(Beer.new); # Works

$starobrno.top_up(Coke.new); # Exception

Perl 6 Roles In Depth

Parametric Roles

� If a role takes just one positional

parameter (like our current example),

you can use the of keyword to specify

the parameter

�Can nest these too

my Can of Beer $starobrno .= new;

my Pack of Can of Beer $six_pack .= new;

Perl 6 Roles In Depth

Parametric Role Variants

�Can define multiple variants of a role

that take different parameters

�Selected using the same mechanisms

as multiple dispatch
role Can[::Contents] { # One parameter

...

}

role Can { # No parameters

...

}

Perl 6 Roles In Depth

Typed Arrays

�Typed arrays restrict what may be

stored inside them

� Implemented as a parametric role

�Can also write it as:

my Str @langs = <Perl Ruby PHP Python>;

@langs = 1, 2, 3; # Error, Int

@langs[2] = 'Smalltalk'; # Fine, Str

push @langs, 4.2; # Error, Num

my @langs of Str = <Perl Ruby PHP Python>;

Perl 6 Roles In Depth

Typed Hashes

�Typed hashes restrict what can be

stored as the values

�Can build up nested typed data

structures

my Int %word_counts;

%word_counts<monkey> = 5; # OK

%word_counts<badger> = 0; # OK

%word_counts<monkey> = "none"; # Error

my @doc_word_counts of Hash of Int;

Perl 6 Roles In Depth

A Common Fail

�Note that the sigil already implies one

level of parametric type

�What does this declare?
my Array @walruses;

Perl 6 Roles In Depth

A Common Fail

�Note that the sigil already implies one

level of parametric type

�What does this declare?

�What does this signature accept?

my Array @walruses;

sub herd(Array @cats) { ... }

Perl 6 Roles In Depth

A Common Fail

�Note that the sigil already implies one

level of parametric type

�What does this declare?

�What does this signature accept?

�Answer for both: an Array of Arrays.

my Array @walruses;

sub herd(Array @cats) { ... }

Perl 6 Roles In Depth

A Common Fail

�Note that the sigil already implies one

level of parametric type

�What does this declare?

�What does this signature accept?

�Answer for both: an Array of Array.

�(Well, really a Positional of Array)

my Array @walruses;

sub herd(Array @cats) { ... }

Roles

Perl 6 Roles In Depth

Traits

Typed data
structures

Sigils

Composition
and mix-ins

Perl 6 Roles In Depth

So what are traits anyway?

�A Perl 6 trait is something applied to a

declarand

�A class that is currently being

declared

�A routine that is currently being

declared

�A variable that is currently being

declared

Perl 6 Roles In Depth

Some Built-in Traits

�A method or sub is marked as being

exported using a trait

� Inheritance works through trait

application too

module Walrus {

sub lose_bukit() is export { ... }

}

class PolarBear is Bear {

...

}

Perl 6 Roles In Depth

Trait Dispatch

�Which trait to do is decided by a

multiple dispatch

� If the trait name is a type name (e.g.

class or role), then the type is looked

up and passed as the second positional

argument

�Otherwise, a pair of the given name is

passed

Perl 6 Roles In Depth

Implementing A Trait Handler

� Inside the trait implementation you can

do pretty much whatever you like

�However, often a well-behaved trait will

mix in a role that provides an attribute

of the same name

�Basic example: a doc trait
sub answer() is doc('Compute the answer') {

return 42;

}

say &answer.doc;

Perl 6 Roles In Depth

Implementing A Trait Handler

�Declare a role to hold the

documentation string

�Then implement a trait mod to apply it

to our routine

role doc {

has $.doc is rw;

}

multi trait_mod:<is>(Routine $r, doc,

$text) {

$r does doc($text);

}

Perl 6 Roles In Depth

Traits On Variables

�Can also apply a trait to a container

�Here's how we write the handler…

�…and how we use it.

multi trait_mod:<is>(Container $c, doc,

$text) {

$c does doc($text);

}

my %counts is doc('Count of each word');

say %counts.doc;

Perl 6 Roles In Depth

Traits On Classes

�Here be dragons: for classes, the jury is

still out on what you get as the

declarand (the meta-class or some

under-construction type object)
multi trait_mod:<is>(Class $c, doc,

$text) {

$c does doc($text);

}

class Bar is doc('Serves beer') { }

say Bar.HOW.doc;

Perl 6 Roles In Depth

Another Routine Trait Example

�Goal: install a wrapper on a routine that

calls log_message on any parameter

that does DebugLog
multi trait_mod:<is>(Routine $r is rw, :$logging!) {

...

}

Perl 6 Roles In Depth

Another Routine Trait Example

�Goal: install a wrapper on a routine that

calls log_message on any parameter

that does DebugLog
multi trait_mod:<is>(Routine $r is rw, :$logging!) {

$r.wrap(sub (*@pos, *%named) {

...

});

}

Perl 6 Roles In Depth

Another Routine Trait Example

�Goal: install a wrapper on a routine that

calls log_message on any parameter

that does DebugLog
multi trait_mod:<is>(Routine $r is rw, :$logging!) {

$r.wrap(sub (*@pos, *%named) {

for @pos, %named.values -> $param {

...

}

...

});

}

Perl 6 Roles In Depth

Another Routine Trait Example

�Goal: install a wrapper on a routine that

calls log_message on any parameter

that does DebugLog
multi trait_mod:<is>(Routine $r is rw, :$logging!) {

$r.wrap(sub (*@pos, *%named) {

for @pos, %named.values -> $param {

if $param ~~ DebugLog {

$param.log_message("Passed to " ~

$r.name);

}

}

...

});

}

Perl 6 Roles In Depth

Another Routine Trait Example

�Goal: install a wrapper on a routine that

calls log_message on any parameter

that does DebugLog
multi trait_mod:<is>(Routine $r is rw, :$logging!) {

$r.wrap(sub (*@pos, *%named) {

for @pos, %named.values -> $param {

if $param ~~ DebugLog {

$param.log_message("Passed to " ~

$r.name);

}

}

nextsame;

});

}

Perl 6 Roles In Depth

That's All!

Perl 6 Roles In Depth

Thank You!

Perl 6 Roles In Depth

Questions?

