
Taking High
Ideals Higher

Jonathan Worthington

Taking High Ideals Higher

OH HAI

Taking High Ideals Higher

What Makes

Perl Great

Taking High Ideals Higher

Get the job done.

Taking High Ideals Higher

Accepts that

different problems need

different solutions.

Procedural

Object Oriented

Functional

Taking High Ideals Higher

Easy things easy.

Hard things possible.

Taking High Ideals Higher

CPAN

Thousands of modules.

Good documentation and

testing culture.

Taking High Ideals Higher

The Perl 6

Project

Taking High Ideals Higher

Take all of the things that

make Perl great.

Taking High Ideals Higher

Learn from the things that

didn't work so well in Perl 5.

Taking High Ideals Higher

Be inspired by the latest and

greatest ideas from other

languages and language

research.

Taking High Ideals Higher

Build a new Perl.

Taking High Ideals Higher

Perl 6

=

Language Specification

+

Official Test Suite

Taking High Ideals Higher

No official implementation.

Taking High Ideals Higher

Implementation projects:

Rakudo

Pugs

SMOP/Mildew

Perlito

Sprixel

…more…

Taking High Ideals Higher

Different implementations

often have a different focus or

strength

=>

Not a duplication problem;

e.g. Rakudo has learned from

other implementations

Taking High Ideals Higher

Fixing Mis-

huffmanizations

Taking High Ideals Higher

Things that you do

frequently should be short

Things that you do

rarely should be longer

Taking High Ideals Higher

In Perl 6, various

language constructs

have been re-evaluated

so we can give them a

more appropriate length.

Taking High Ideals Higher

Method Calling

Beer->new(type => 'blonde')->drink;

Beer.new(type => 'blonde').drink;

Taking High Ideals Higher

say (also in Perl 5.10)

print "Привет!\n";

print "Пиво?\n";

say "Привет!";

say "Пиво?";

Taking High Ideals Higher

Less Parentheses

if ($answer == 42) {

for (1..10) { say "Correct!"; }

}

if $answer == 42 {

for 1..10 { say "Correct!"; }

}

Taking High Ideals Higher

Easy Things

Made Easier

Taking High Ideals Higher

Perl 5 makes many

easy things easy.

In Perl 6, we've

worked to make

them even easier.

Taking High Ideals Higher

Hash Iteration

for my $name (keys %ages) {

say "$name is $ages{$name}";

}

for %ages.kv -> $name, $age {

say "$name is $age";

}

Taking High Ideals Higher

Subroutine Signatures

sub order {

my ($beer, $pints) = @_;

print "$pints pints of $beer\n";

}

sub order($beer, $pints) {

say "$pints pints of $beer";

}

Taking High Ideals Higher

Sorting

@sorted = sort {

$a->{'price'} <=> $b->{'price'}

} @unsorted;

@sorted = @unsorted.sort({ .price });

Taking High Ideals Higher

Sorting

@sorted = sort {

$a->{'price'} <=> $b->{'price'}

} @unsorted;

@sorted = @unsorted.sort({ .price });

@sorted = @unsorted.sort(*.price);

or

Taking High Ideals Higher

Chained Conditionals

if ($age >= 18 && $age <= 65) {

say "Pay the adult price";

}

if 18 <= $age <= 65 {

say "Pay the adult price";

}

Taking High Ideals Higher

Junctions

while ($x < $lim_a && $x < $lim_b) {

…

}

while $x < $lim_a & $lim_b {

…

}

Taking High Ideals Higher

Junctions

if ($drink eq 'Beer' ||

$drink eq 'Vodka') {

…

}

if $drink eq 'Beer' 'Vodka' {

…

}

Taking High Ideals Higher

Reductions

my $total = 0;

$total += $_ for @values;

say $total;

say [+] @values;

Taking High Ideals Higher

Reductions

my $factorial = 1;

$fact *= $_ for 1..$n;

say $factorial;

say [*] 1..$n;

Taking High Ideals Higher

Better OO

Programming

Taking High Ideals Higher

In Perl 6, you can treat

everything as an object

if you want to.

Taking High Ideals Higher

say "dam".flip; # mad

say (1,2,3).join('|') # 1|2|3

say (1..10).grep({ $_ !% 3 }); # 369

say 4.25.round # 4

Taking High Ideals Higher

say "dam".flip; # mad

say (1,2,3).join('|') # 1|2|3

say (1..10).grep({ $_ !% 3 }); # 369

say 4.25.round # 4

(Of course, the function

forms still work too)

Taking High Ideals Higher

If you've used Moose, you

will probably find the Perl 6

object model easy to start

using.

Different syntax, but a lot of

the same keywords and

concepts.

Taking High Ideals Higher

class Beer {

has $!name;

method describe() {

say "I'm drinking $!name";

}

}

Creating and using a class

is quick and easy.

my $pint =

Beer.new(name => 'Baltika');

$pint.describe();

Taking High Ideals Higher

class Dog {

has $.name is rw;

has $.color;

}

Attributes are private;

declarative accessor syntax.

my $pet = Dog.new(

name => 'Spot', color => 'Black'

);

$pet.name = 'Fido'; # OK

$pet.color = 'White'; # Fails

Taking High Ideals Higher

Also provides…

Inheritance

Delegation

Constructors

Deferral to parents

Introspection

Meta-programming

Taking High Ideals Higher

Real World Example:

A karma tracking

IRC Bot

Written by Carlin Bingham

Taking High Ideals Higher

Perl 6 supports (multiple)

inheritance.

However, multiple inheritance

has issues (e.g. diamond

problem), and single

inheritance limits re-use.

Taking High Ideals Higher

As well as classes, the Perl

6 object model includes

support for roles.

Taking High Ideals Higher

A role can have attributes

and methods, but unlike a

class is not intended to be

used on its own.

Instead one or more roles

are composed into a class.

Taking High Ideals Higher

role Logging {

method log($message) {

my $fh = open('log', :a);

$fh.say($message);

$fh.close;

}

}

class MailSender does Logging {

…

}

Taking High Ideals Higher

Methods and attributes are

"copied" into the class, as

if they were declared there.

If two roles try to supply a

method with the same

name, you get a compile

time error.

Taking High Ideals Higher

role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

}

Taking High Ideals Higher

Such conflicts can be

resolved by:

Writing a method in the class

that decides what to do

or

Having a proto method in the

class to make them multis

Taking High Ideals Higher

role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

method go-to-bar() {

self.Gymnastics::go-to-bar();

}

}

Taking High Ideals Higher

More

Powerful

Parsing

Taking High Ideals Higher

Perl has always been a leader

in regexes.

In Perl 6, regex syntax has

been radically updated and

made much, much more

powerful.

Taking High Ideals Higher

In Perl 6, regexes are

not just strings.

They are a first class

language within the Perl 6

language.

Taking High Ideals Higher

Many changes make regex

syntax more consistent.

Taking High Ideals Higher

Any letter, number or the

underscore (by unicode

semantics) is a literal.

Everything else is considered

to be syntax.

Taking High Ideals Higher

The /m modifier is gone

^ matches start of string

^^ matches start of line

$ matches end of string

$$ matches end of line

Taking High Ideals Higher

A range in a character class is

written using .. – just like

ranges in the rest of Perl!

/<[0..9A..F]>/

Taking High Ideals Higher

Use single quotes for

matching a literal string – just

like in the rest of Perl.

/ '[' '/'? \w+ ']' /

Taking High Ideals Higher

Perl 6 also tries to fix the

problems with regex culture.

Taking High Ideals Higher

Just like you break the rest of

your program up into re-

usable parts, you are

encouraged to do the same

with your regexes in Perl 6.

Taking High Ideals Higher

regex IntPhoneNumber {

<CountryCode> \s+

<AreaCode> \s+

<LocalNumber>

}

regex CountryCode {

'+' \d**1..3

}

regex AreaCode {

'(' \d**{3..5} ')'

}

regex LocalNumber {

\d**{5..10}

}

Taking High Ideals Higher

Notice that whitespace in your

regex does not match
anything (other than in rule).

So you've no excuse not to

space your regexes out and

add comments so that others

can read them!

Taking High Ideals Higher

Just as you collect methods

together into a class, you can

collect regexes together into a

grammar.

So Perl 6 CPAN will contain

ready-made grammars for

parsing things.

Taking High Ideals Higher

Real World Example:

A grammar for JSON

Written by Moritz Lenz

Taking High Ideals Higher

Perl 6 itself is parsed using

Perl 6 regexes.

This means that once you

learn Perl 6 regexes, you can

start to understand or even

hack on the Perl 6 parser.

Taking High Ideals Higher

Multiple

Dispatch

Taking High Ideals Higher

The idea of "DWIM" (Do What I

Mean) has always been an

important part of Perl.

In Perl 6, one feature that

helps deliver this is multiple

dispatch.

Taking High Ideals Higher

Write many subroutines or

methods with the same name

but with different signatures.

When you make a class, the

runtime decides which one is

best and calls it.

Taking High Ideals Higher

Example (from Test.pm):

different number of parameters
multi sub todo($reason, $count) is export {

$todo_upto_test_num = $num_of_tests_run + $count;

$todo_reason = '# TODO ' ~ $reason;

}

multi sub todo($reason) is export {

$todo_upto_test_num = $num_of_tests_run + 1;

$todo_reason = '# TODO ' ~ $reason;

}

Taking High Ideals Higher

Example: different types of

parameters
class Paper { }

class Scissor { }

class Stone { }

multi win(Paper, Stone) { "Win" }

multi win(Scissor, Paper) { "Win" }

multi win(Stone, Scissor) { "Win" }

multi win(::T, T) { "Draw" }

multi win(Any, Any) { "Lose" }

say win(Paper, Paper); # Draw

say win(Paper, Scissor); # Lose

say win(Stone, Scissor); # Win

Taking High Ideals Higher

Perl 6 multiple dispatch can

also consider values and the

structure of a complex value.

This enables a lot of "write

what you know" style

solutions.

Taking High Ideals Higher

Factorial:

Taking High Ideals Higher

Factorial:

fact(0) = 1

Taking High Ideals Higher

Factorial:

fact(0) = 1

fact(n) = n * fact(n - 1)

Taking High Ideals Higher

Factorial:

fact(0) = 1

fact(n) = n * fact(n - 1)
multi fact(0) { 1 }

multi fact($n) { $n * fact($n – 1) }

Taking High Ideals Higher

Fibonacci Sequence:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n – 1) + fib(n – 2)

Taking High Ideals Higher

Fibonacci Sequence:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n – 1) + fib(n – 2)
multi fib(0) { 0 }

multi fib(1) { 1 }

multi fib($n) { fib($n – 1) + fib($n – 2) }

Taking High Ideals Higher

Quicksort

Taking High Ideals Higher

Quicksort
Empty list sorts to the empty list

multi quicksort([]) { () }

Taking High Ideals Higher

Quicksort
Empty list sorts to the empty list

multi quicksort([]) { () }

Otherwise, extract first item as pivot...

multi quicksort([$pivot, *@rest]) {

...

}

Taking High Ideals Higher

Quicksort
Empty list sorts to the empty list

multi quicksort([]) { () }

Otherwise, extract first item as pivot...

multi quicksort([$pivot, *@rest]) {

Partition.

my @before = @rest.grep({ $_ < $pivot });

my @after = @rest.grep({ $_ >= $pivot });

…

}

Taking High Ideals Higher

Quicksort
Empty list sorts to the empty list

multi quicksort([]) { () }

Otherwise, extract first item as pivot...

multi quicksort([$pivot, *@rest]) {

Partition.

my @before = @rest.grep({ $_ < $pivot });

my @after = @rest.grep({ $_ >= $pivot });

Sort the partitions.

(quicksort(@before), $pivot, quicksort(@after))

}

Taking High Ideals Higher

Perl 6 operators are

implemented as multi-subs.

Operator overloading means

simply writing another multi

sub for your type.

Taking High Ideals Higher

Designed To

Evolve – But

Sanely

Taking High Ideals Higher

The natural languages that we

speak change over time

New words and structures to

express new concepts

Adapt to the needs of users

Taking High Ideals Higher

adapt || die

Taking High Ideals Higher

Perl 5 is 15 years old and

already wanting to evolve.

Thus…

Source filters

Devel::Declare

Taking High Ideals Higher

Perl 6 is designed to accept

that language evolution is

something that Just Happens.

Thus it provides clean ways to

extend the language.

Taking High Ideals Higher

Languages changes are

lexically scoped, not global.

Parser always knows what

language it's parsing.

Reader knows what dialect of

Perl 6 they are reading.

Taking High Ideals Higher

Some things (new operators)

are trivial.
multi postfix:<!>(0) { 1 }

multi postfix:<!>($n) { $n * ($n – 1)! }

say 10!; # 3628800

Taking High Ideals Higher

Some things (new operators)

are trivial.

More advanced things harder,

but possible.

multi postfix:<!>(0) { 1 }

multi postfix:<!>($n) { $n * ($n – 1)! }

say 10!; # 3628800

Taking High Ideals Higher

Conclusions

Taking High Ideals Higher

Perl 6 is a large and ambitious

project being developed by a

relatively small team.

We already have a compiler

that can run all of today's

examples, however.

Taking High Ideals Higher

Rakudo *

Distribution release taking

place in late May or early-mid

June 2010.

Taking High Ideals Higher

Rakudo *

Not all Perl 6, but a large and

powerful subset of it with

good coverage of OO, regexes

and grammars, built-in

operators and functions,

multi-dispatch, and more.

Taking High Ideals Higher

Rakudo *

Will include not only the

compiler, but also a selection

of modules and a module

installation/update tool.

Taking High Ideals Higher

Rakudo *

Also aiming to include

support for using many Perl 5

CPAN modules from Perl 6.

(This is an area of active

development currently.)

Taking High Ideals Higher

And Perl 6.0.0?

Not setting a date.

When we have a viable

implementation that is

considered "good enough"

(not perfect.)

Taking High Ideals Higher

Rakudo beyond Rakudo *

Native types/structures

Parallelism

Improved IO

Add other missing features

More backends

More speed, more stability

Taking High Ideals Higher

Get Involved /

Learn More

Taking High Ideals Higher

Want to learn more?

Get Rakudo Perl 6 from:

http://www.rakudo.org/

Lots of Perl 6 resources can be found at:

http://www.perl6.org/

Join the friendly IRC channel:

#perl6 on irc.freenode.org

Write modules, write applications, jump into

the evolving Perl 6 community and make

your mark on it

Taking High Ideals Higher

Спасибо!

Taking High Ideals Higher

Questions?

