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What Makes

Perl Great
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Get the job done.
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Accepts that

different problems need 

different solutions.

Procedural

Object Oriented

Functional
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Easy things easy.

Hard things possible.
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CPAN

Thousands of modules.

Good documentation and 

testing culture.
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The Perl 6 

Project
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Take all of the things that 

make Perl great.
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Learn from the things that 

didn't work so well in Perl 5.
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Be inspired by the latest and 

greatest ideas from other 

languages and language 

research.
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Build a new Perl.
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Perl 6

=

Language Specification

+

Official Test Suite



Taking High Ideals Higher

No official implementation.
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Implementation projects:

Rakudo

Pugs

SMOP/Mildew

Perlito

Sprixel

…more…
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Different implementations 

often have a different focus or 

strength

=>

Not a duplication problem;

e.g. Rakudo has learned from 

other implementations
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Fixing Mis-

huffmanizations
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Things that you do

frequently should be short

Things that you do

rarely should be longer
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In Perl 6, various 

language constructs 

have been re-evaluated 

so we can give them a 

more appropriate length.
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Method Calling

Beer->new(type => 'blonde')->drink;

Beer.new(type => 'blonde').drink;
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say (also in Perl 5.10)

print "Привет!\n";

print "Пиво?\n";

say "Привет!";

say "Пиво?";
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Less Parentheses

if ($answer == 42) {

for (1..10) { say "Correct!"; } 

}

if $answer == 42 {

for 1..10 { say "Correct!"; } 

}
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Easy Things 

Made Easier
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Perl 5 makes many 

easy things easy.

In Perl 6, we've 

worked to make 

them even easier.
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Hash Iteration

for my $name (keys %ages) {

say "$name is $ages{$name}";  

}

for %ages.kv -> $name, $age {

say "$name is $age";  

}
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Subroutine Signatures

sub order {

my ($beer, $pints) = @_;

print "$pints pints of $beer\n";

}

sub order($beer, $pints) {

say "$pints pints of $beer";

}
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Sorting

@sorted = sort { 

$a->{'price'} <=> $b->{'price'}

} @unsorted;

@sorted = @unsorted.sort({ .price });
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Sorting

@sorted = sort { 

$a->{'price'} <=> $b->{'price'}

} @unsorted;

@sorted = @unsorted.sort({ .price });

@sorted = @unsorted.sort(*.price);

or
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Chained Conditionals

if ($age >= 18 && $age <= 65) {

say "Pay the adult price";

}

if 18 <= $age <= 65 {

say "Pay the adult price";

}
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Junctions

while ($x < $lim_a && $x < $lim_b) {

…

}

while $x < $lim_a & $lim_b {

…

}
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Junctions

if ($drink eq 'Beer' || 

$drink eq 'Vodka') {

…

}

if $drink eq 'Beer' 'Vodka' {

…

}
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Reductions

my $total = 0;

$total += $_ for @values;

say $total;

say [+] @values;
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Reductions

my $factorial = 1;

$fact *= $_ for 1..$n;

say $factorial;

say [*] 1..$n;
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Better OO 

Programming
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In Perl 6, you can treat 

everything as an object

if you want to.
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say "dam".flip; # mad

say (1,2,3).join('|') # 1|2|3

say (1..10).grep({ $_ !% 3 }); # 369

say 4.25.round # 4
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say "dam".flip; # mad

say (1,2,3).join('|') # 1|2|3

say (1..10).grep({ $_ !% 3 }); # 369

say 4.25.round # 4

(Of course, the function 

forms still work too )
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If you've used Moose, you 

will probably find the Perl 6 

object model easy to start 

using.

Different syntax, but a lot of 

the same keywords and 

concepts.
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class Beer {

has $!name;

method describe() {

say "I'm drinking $!name";

}

}

Creating and using a class 

is quick and easy.

my $pint =

Beer.new(name => 'Baltika');

$pint.describe();
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class Dog {

has $.name is rw;

has $.color;

}

Attributes are private; 

declarative accessor syntax.

my $pet = Dog.new(

name => 'Spot', color => 'Black'

);

$pet.name = 'Fido';   # OK

$pet.color = 'White'; # Fails
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Also provides…

Inheritance

Delegation

Constructors

Deferral to parents 

Introspection 

Meta-programming
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Real World Example:

A karma tracking

IRC Bot

Written by Carlin Bingham
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Perl 6 supports (multiple) 

inheritance.

However, multiple inheritance 

has issues (e.g. diamond 

problem), and single 

inheritance limits re-use.
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As well as classes, the Perl 

6 object model includes 

support for roles.
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A role can have attributes

and methods, but unlike a 

class is not intended to be 

used on its own.

Instead one or more roles 

are composed into a class.
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role Logging {

method log($message) {

my $fh = open('log', :a);

$fh.say($message);

$fh.close;

}

}

class MailSender does Logging {

…

}
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Methods and attributes are 

"copied" into the class, as 

if they were declared there.

If two roles try to supply a 

method with the same 

name, you get a compile 

time error.
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role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

}
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Such conflicts can be 

resolved by:

Writing a method in the class 

that decides what to do

or

Having a proto method in the 

class to make them multis
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role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

method go-to-bar() {

self.Gymnastics::go-to-bar();

}

}
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More

Powerful 

Parsing
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Perl has always been a leader 

in regexes.

In Perl 6, regex syntax has 

been radically updated and 

made much, much more 

powerful. 
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In Perl 6, regexes are

not just strings.

They are a first class 

language within the Perl 6 

language.
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Many changes make regex 

syntax more consistent.
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Any letter, number or the 

underscore (by unicode 

semantics) is a literal.

Everything else is considered 

to be syntax.
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The /m modifier is gone

^ matches start of string

^^ matches start of line

$ matches end of string

$$ matches end of line
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A range in a character class is 

written using .. – just like 

ranges in the rest of Perl!

/<[0..9A..F]>/
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Use single quotes for 

matching a literal string – just 

like in the rest of Perl.

/ '[' '/'? \w+ ']' /
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Perl 6 also tries to fix the 

problems with regex culture.
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Just like you break the rest of 

your program up into re-

usable parts, you are 

encouraged to do the same 

with your regexes in Perl 6.



Taking High Ideals Higher

regex IntPhoneNumber {

<CountryCode> \s+

<AreaCode> \s+

<LocalNumber>

}

regex CountryCode {

'+' \d**1..3

}

regex AreaCode {

'(' \d**{3..5} ')'

}

regex LocalNumber {

\d**{5..10}

}
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Notice that whitespace in your 

regex does not match 
anything (other than in rule).

So you've no excuse not to 

space your regexes out and 

add comments so that others 

can read them! 



Taking High Ideals Higher

Just as you collect methods 

together into a class, you can 

collect regexes together into a 

grammar.

So Perl 6 CPAN will contain 

ready-made grammars for 

parsing things. 
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Real World Example:

A grammar for JSON

Written by Moritz Lenz
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Perl 6 itself is parsed using 

Perl 6 regexes.

This means that once you 

learn Perl 6 regexes, you can 

start to understand or even 

hack on the Perl 6 parser. 
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Multiple

Dispatch
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The idea of "DWIM" (Do What I 

Mean) has always been an 

important part of Perl.

In Perl 6, one feature that 

helps deliver this is multiple 

dispatch.
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Write many subroutines or 

methods with the same name

but with different signatures.

When you make a class, the 

runtime decides which one is 

best and calls it.
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Example (from Test.pm): 

different number of parameters
multi sub todo($reason, $count) is export {

$todo_upto_test_num = $num_of_tests_run + $count;

$todo_reason = '# TODO ' ~ $reason;

}

multi sub todo($reason) is export {

$todo_upto_test_num = $num_of_tests_run + 1;

$todo_reason = '# TODO ' ~ $reason;

}



Taking High Ideals Higher

Example: different types of 

parameters
class Paper { }

class Scissor { }

class Stone { }

multi win(Paper,   Stone)   { "Win" }

multi win(Scissor, Paper)   { "Win" }

multi win(Stone,   Scissor) { "Win" }

multi win(::T,     T)       { "Draw" }

multi win(Any,     Any)     { "Lose" }

say win(Paper, Paper);    # Draw

say win(Paper, Scissor);  # Lose

say win(Stone, Scissor);  # Win
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Perl 6 multiple dispatch can 

also consider values and the 

structure of a complex value.

This enables a lot of "write 

what you know" style 

solutions.
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Factorial:
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Factorial:

fact(0) = 1
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Factorial:

fact(0) = 1

fact(n) = n * fact(n - 1)
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Factorial:

fact(0) = 1

fact(n) = n * fact(n - 1)
multi fact(0)  { 1 }

multi fact($n) { $n * fact($n – 1) }
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Fibonacci Sequence:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n – 1) + fib(n – 2)
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Fibonacci Sequence:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n – 1) + fib(n – 2)
multi fib(0)  { 0 }

multi fib(1)  { 1 }

multi fib($n) { fib($n – 1) + fib($n – 2) }
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Quicksort
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Quicksort
# Empty list sorts to the empty list

multi quicksort([]) { () }
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Quicksort
# Empty list sorts to the empty list

multi quicksort([]) { () }

# Otherwise, extract first item as pivot...

multi quicksort([$pivot, *@rest]) {

...

}
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Quicksort
# Empty list sorts to the empty list

multi quicksort([]) { () }

# Otherwise, extract first item as pivot...

multi quicksort([$pivot, *@rest]) {

# Partition.

my @before = @rest.grep({ $_ < $pivot });

my @after  = @rest.grep({ $_ >= $pivot });

…

}
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Quicksort
# Empty list sorts to the empty list

multi quicksort([]) { () }

# Otherwise, extract first item as pivot...

multi quicksort([$pivot, *@rest]) {

# Partition.

my @before = @rest.grep({ $_ < $pivot });

my @after  = @rest.grep({ $_ >= $pivot });

# Sort the partitions.

(quicksort(@before), $pivot, quicksort(@after))

}
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Perl 6 operators are 

implemented as multi-subs.

Operator overloading means 

simply writing another multi 

sub for your type.
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Designed To 

Evolve – But 

Sanely
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The natural languages that we 

speak change over time

New words and structures to 

express new concepts

Adapt to the needs of users



Taking High Ideals Higher

adapt || die
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Perl 5 is 15 years old and 

already wanting to evolve. 

Thus…

Source filters

Devel::Declare
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Perl 6 is designed to accept 

that language evolution is 

something that Just Happens.

Thus it provides clean ways to 

extend the language.
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Languages changes are 

lexically scoped, not global.

Parser always knows what 

language it's parsing.

Reader knows what dialect of 

Perl 6 they are reading.
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Some things (new operators) 

are trivial.
multi postfix:<!>(0)  { 1 }

multi postfix:<!>($n) { $n * ($n – 1)! }

say 10!; # 3628800
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Some things (new operators) 

are trivial.

More advanced things harder, 

but possible. 

multi postfix:<!>(0)  { 1 }

multi postfix:<!>($n) { $n * ($n – 1)! }

say 10!; # 3628800
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Conclusions
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Perl 6 is a large and ambitious 

project being developed by a 

relatively small team.

We already have a compiler 

that can run all of today's 

examples, however. 
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Rakudo *

Distribution release taking 

place in late May or early-mid 

June 2010.



Taking High Ideals Higher

Rakudo *

Not all Perl 6, but a large and 

powerful subset of it with 

good coverage of OO, regexes 

and grammars, built-in 

operators and functions, 

multi-dispatch, and more.
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Rakudo *

Will include not only the 

compiler, but also a selection 

of modules and a module 

installation/update tool.
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Rakudo *

Also aiming to include 

support for using many Perl 5 

CPAN modules from Perl 6.

(This is an area of active 

development currently.)



Taking High Ideals Higher

And Perl 6.0.0?

Not setting a date.

When we have a viable 

implementation that is 

considered "good enough" 

(not perfect.)
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Rakudo beyond Rakudo *

Native types/structures

Parallelism

Improved IO

Add other missing features

More backends

More speed, more stability
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Get Involved / 

Learn More
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Want to learn more?

Get Rakudo Perl 6 from:

http://www.rakudo.org/

Lots of Perl 6 resources can be found at:

http://www.perl6.org/

Join the friendly IRC channel:

#perl6 on irc.freenode.org

Write modules, write applications, jump into 

the evolving Perl 6 community and make 

your mark on it 
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Спасибо!



Taking High Ideals Higher

Questions?


