
Taking Rakudo Forward:

What I'm Hacking On

Jonathan Worthington

Taking Rakudo Forward: What I'm Hacking On

My previous talk:

Perl 6 from a

user's perspective

Taking Rakudo Forward: What I'm Hacking On

This talk:

Perl 6 from an

implementer's

perspective

Taking Rakudo Forward: What I'm Hacking On

or

Taking Rakudo Forward: What I'm Hacking On

This talk:

A peek inside

my brain

Taking Rakudo Forward: What I'm Hacking On

Perl 6

stuff

"I want

a beer"

"I want

a steak"

I/O

Bad puns

Image Attribution:

WikiPedia

" Она

красива! "

Taking Rakudo Forward: What I'm Hacking On

Perl 6

stuff

"I want

a beer"

"I want

a steak"

I/O
" Она

красива! "

Bad puns

Image Attribution:

WikiPedia

Taking Rakudo Forward: What I'm Hacking On

Rakudo

Development

Philosophy

Taking Rakudo Forward: What I'm Hacking On

Start off by

achieving wide

feature coverage but

low feature "depth"

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Before we called it
Rakudo

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Hack

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Hack hack

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Hack hack hack

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

OMG new grammar
engine!

Taking Rakudo Forward: What I'm Hacking On

Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Mmm....beer and
hacking!

Taking Rakudo Forward: What I'm Hacking On

Try to get something

usable into user's

hands earlier rather

than later

Taking Rakudo Forward: What I'm Hacking On

Users

=

Community

=

Feedback

Taking Rakudo Forward: What I'm Hacking On

Users

=

Community

=

FeedbackI
m

p
r
o
v
e

m
e

n
t
s

Taking Rakudo Forward: What I'm Hacking On

Rakudo *

Useful, usable release

aimed at early adopters

Lots of nice features

Various issues

Taking Rakudo Forward: What I'm Hacking On

Rakudo * - a

nice view

point on the

journey

Taking Rakudo Forward: What I'm Hacking On

Perl

6.0.0

Rakudo * - a

nice view

point on the

journey

Mu

Taking Rakudo Forward: What I'm Hacking On

Focus of today's talk:

The work I'm doing to

help us complete the

next big part of the

climb

Taking Rakudo Forward: What I'm Hacking On

Introducing

Meta-models:

A Story

Taking Rakudo Forward: What I'm Hacking On

Once upon a time, I

wrote a class.

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0 ?? 'wtf' !!

$!lol-factor < 42 ?? 'lol' !!

'rofl');

}

}

}

Taking Rakudo Forward: What I'm Hacking On

I thought

my work

was done,

and I

could go

for a beer.

Taking Rakudo Forward: What I'm Hacking On

But then

my class

started

asking me

questions...

OMG
WTF?!

Taking Rakudo Forward: What I'm Hacking On

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0 ?? 'wtf' !!

$!lol-factor < 42 ?? 'lol' !!

'rofl');

}

}

}

How was
I created?

Taking Rakudo Forward: What I'm Hacking On

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0 ?? 'wtf' !!

$!lol-factor < 42 ?? 'lol' !!

'rofl');

}

}

}

What does it mean to
have methods?

Taking Rakudo Forward: What I'm Hacking On

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0 ?? 'wtf' !!

$!lol-factor < 42 ?? 'lol' !!

'rofl');

}

}

}

What does it mean
to inherit?

Taking Rakudo Forward: What I'm Hacking On

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0 ?? 'wtf' !!

$!lol-factor < 42 ?? 'lol' !!

'rofl');

}

}

}

Do other classes all
behave like me?

Taking Rakudo Forward: What I'm Hacking On

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0 ?? 'wtf' !!

$!lol-factor < 42 ?? 'lol' !!

'rofl');

}

}

}

What about prototype
OO?

Taking Rakudo Forward: What I'm Hacking On

Classes in Perl 6 are

just one type of

package.

We also have

grammars and roles.

Taking Rakudo Forward: What I'm Hacking On

…

token package_declarator:class {

:my $*PKGDECL := 'class';

<sym> <package_def>

}

token package_declarator:grammar {

:my $*PKGDECL := 'grammar';

<sym> <package_def>

}

token package_declarator:role {

:my $*PKGDECL := 'role';

<sym> <package_def>

}

…

STD.pm

Taking Rakudo Forward: What I'm Hacking On

…

token package_declarator:class {

:my $*PKGDECL := 'class';

<sym> <package_def>

}

token package_declarator:grammar {

:my $*PKGDECL := 'grammar';

<sym> <package_def>

}

token package_declarator:role {

:my $*PKGDECL := 'role';

<sym> <package_def>

}

…

STD.pm

Taking Rakudo Forward: What I'm Hacking On

All have methods,

attributes, semantics for

inheritance and

composition, etc.

Many more

commonalities than

differences.

Taking Rakudo Forward: What I'm Hacking On

Could bake the details

deep in the

implementation.

Not hackable, not

extensible…and thus

not Perl 6-like.

Taking Rakudo Forward: What I'm Hacking On

Idea!

Define an API and

implement it for each

type of package.

Taking Rakudo Forward: What I'm Hacking On

OO API

Make the API actually be a set of

methods on an object

Different type of package =

different type of object

Tweak an existing package type

by subclassing

Taking Rakudo Forward: What I'm Hacking On

Implement the object

model in terms of

objects.

Extend the object

model in terms of

objects.

Taking Rakudo Forward: What I'm Hacking On

Meta-object

An object that

specifies how some

other object works

Taking Rakudo Forward: What I'm Hacking On

Meta-object Protocol

The set of methods

that we implement in

a meta-object

Taking Rakudo Forward: What I'm Hacking On

::LolCat := ClassHOW.new_type(name => 'LolCat');

LolCat.^add_parent(Cat);

LolCat.^add_attribute(Attribute.new(

name => '$!caption', has_accessor => True

));

LolCat.^add_attribute(Attribute.new(

name => '$!lol-factor'

));

LolCat.^add_method('lol', method () {

...

});

LolCat.^compose();

Taking Rakudo Forward: What I'm Hacking On

The 6model

Project

Taking Rakudo Forward: What I'm Hacking On

Today's object

implementation in

Rakudo builds a layer

on top of the Parrot

built-in object model.

Taking Rakudo Forward: What I'm Hacking On

Allowed us to get to

something that works

well enough quickly

but

We've hit limits of this

approach

Taking Rakudo Forward: What I'm Hacking On

 Semantic gap hurts

 Hard to hack on or change

 Hard to reason about

 Tricky to port to other VMs

 Performance issues

 No easy path to implement

type-driven optimizations

 No easy path to implement

representation polymorphism

Taking Rakudo Forward: What I'm Hacking On

Let's look at
this with

fresh eyes.

Taking Rakudo Forward: What I'm Hacking On

Small object model core designed with

serving Perl 6's needs at its heart

Taking Rakudo Forward: What I'm Hacking On

Small object model core designed with

serving Perl 6's needs at its heart

Learn from…

Moose SMOP

Static OO

Languages

Current

Model

CLOS

Smalltalk

Academic

Work

Taking Rakudo Forward: What I'm Hacking On

So what do I want out

of this process?

Taking Rakudo Forward: What I'm Hacking On

Small

Low-Level Core

Write the rest

in Perl 6

(or a subset of it)

Taking Rakudo Forward: What I'm Hacking On

Tension between

"low-level and fast at

runtime"

and

"high level, hackable,

extensible and

maintainable"

Taking Rakudo Forward: What I'm Hacking On

"What are the core

primitives to try and

get really fast?"

Taking Rakudo Forward: What I'm Hacking On

Method dispatch in the

common, optimizable

cases

Attribute access

Type checks

Object instantiation

Taking Rakudo Forward: What I'm Hacking On

Don't need to worry

quite so much over…

Taking Rakudo Forward: What I'm Hacking On

Type construction

(happens at compile time)

Role composition

Introspection

The uncommon cases

Taking Rakudo Forward: What I'm Hacking On

Conclusions

Primitives will be:

Method dispatch

Attribute storage and lookup

Object allocation

Build everything else (classes,

inheritance, roles, introspection)

out of them

Taking Rakudo Forward: What I'm Hacking On

Representation

Polymorphism

Taking Rakudo Forward: What I'm Hacking On

How do we represent an

object in memory?

How do we store

attributes?

How do we box/unbox

native types?

Taking Rakudo Forward: What I'm Hacking On

These are all issues

related to representation.

Perl 6 offers representation

polymorphism, to allow

classes to choose (or let

the class user choose) a

representation strategy.

Taking Rakudo Forward: What I'm Hacking On

Possible to leave a class open to

being instantiated with different

representations

“I want to store lots of these in an

array” => bit-packed representation

“Just one, fast access” => typical

word-aligned representation

class Color::RGB is repr(*) {

has uint8 $.red;

has uint8 $.green;

has uint8 $.blue;

}

Taking Rakudo Forward: What I'm Hacking On

Conclusions

We shall have two core APIs.

HOW API = control over dispatch,

declarations, introspection

REPR API = control over object

allocation, attribute storage (and

if applicable, GC interaction)

Taking Rakudo Forward: What I'm Hacking On

Gradual

Typing

Taking Rakudo Forward: What I'm Hacking On

sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information

is there in this code?

Taking Rakudo Forward: What I'm Hacking On

sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information

is there in this code?

Cat

Taking Rakudo Forward: What I'm Hacking On

sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information

is there in this code?

Cat Any

Taking Rakudo Forward: What I'm Hacking On

sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information

is there in this code?

Cat Any Mu

Taking Rakudo Forward: What I'm Hacking On

No extra

type

information

provided

Fully

Statically

typed

program

The compiler lets you

choose how much

type information to

provide

and

tries to give you more

benefits as you give

it more information to

work with

Taking Rakudo Forward: What I'm Hacking On

A key place we can take

advantage of type information

is to optimize method

dispatches

Normally, we look up methods

in a hash table

Faster is to index into a v-table

Taking Rakudo Forward: What I'm Hacking On

class Shape {

has $.name;

method area() { ... }

}

class Square is Shape {

method area($side) { $side ** 2 }

}

...

Copied v-table

from Any

...

V-table for Shape

Taking Rakudo Forward: What I'm Hacking On

class Shape {

has $.name;

method area() { ... }

}

class Square is Shape {

method area($side) { $side ** 2 }

}

...

Copied v-table

from Any

...

area

name

V-table for Shape

Taking Rakudo Forward: What I'm Hacking On

class Shape {

has $.name;

method area() { ... }

}

class Square is Shape {

method area($side) { $side ** 2 }

}

...

Copied v-table

from Any

...

area

name

...

Copied v-table

from Any

...

area

name

V-table for Shape V-table for Square

\

Copy

Taking Rakudo Forward: What I'm Hacking On

Conclusions

Compiling method dispatches to

v-table lookups means we need

the meta-objects built and

available at compile time

Single unified compile time and

runtime MOP...

...and a place to hang a v-table

Taking Rakudo Forward: What I'm Hacking On

The Model

So Far

Taking Rakudo Forward: What I'm Hacking On

Object

...

Taking Rakudo Forward: What I'm Hacking On

Object

...

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

Taking Rakudo Forward: What I'm Hacking On

Object

...

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

Taking Rakudo Forward: What I'm Hacking On

Object

Meta-object

REPR

Under control of

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

?

Taking Rakudo Forward: What I'm Hacking On

Object

Meta-object

REPR

WHAT

V-table

Under control of

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

?

Objects are

getting a

little fat...

Taking Rakudo Forward: What I'm Hacking On

Object

S-Table

Under control of

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

S-Table

Meta-object

REPR

WHAT

V-table

Taking Rakudo Forward: What I'm Hacking On

Bounded

Serialization

Taking Rakudo Forward: What I'm Hacking On

We build the meta-objects and

S-tables at compile time

but

We need them at runtime

Serialize (freeze) them at the end

of the compile, and deserialize

(thaw) them at program startup

Taking Rakudo Forward: What I'm Hacking On

One of the main reasons that

Rakudo’s startup time is so bad

today is that we have to

construct all of the built-in types

at startup.

Want to just serialize them all

once and be able to quickly

deserialize them each startup.

Taking Rakudo Forward: What I'm Hacking On

Tricky problem is tricky.

Taking Rakudo Forward: What I'm Hacking On

class Food {

has $.hot;

has $.vegetarian;

}

use Food;

class Pizza {

has $.diameter;

has @.toppings;

}

Food.pmPizza.pm

Food

S-Table

Under control

of REPR

Taking Rakudo Forward: What I'm Hacking On

class Food {

has $.hot;

has $.vegetarian;

}

use Food;

class Pizza {

has $.diameter;

has @.toppings;

}

Food.pmPizza.pm

S-Table

Meta-object

REPR

WHAT

V-table

Food MO

S-Table

...attr...

...attr...

parent

...attr...

Food

S-Table

Under control

of REPR

Taking Rakudo Forward: What I'm Hacking On

class Food {

has $.hot;

has $.vegetarian;

}

use Food;

class Pizza {

has $.diameter;

has @.toppings;

}

Food.pm

Pizza

S-Table

Under control

of REPR

Pizza.pm

S-Table

Meta-object

REPR

WHAT

V-table

Pizza MO

S-Table

...attr...

...attr...

parent

...attr... S-Table

Meta-object

REPR

WHAT

V-table

Food MO

S-Table

...attr...

...attr...

parent

...attr...

Food

S-Table

Under control

of REPR

Taking Rakudo Forward: What I'm Hacking On

class Food {

has $.hot;

has $.vegetarian;

}

use Food;

class Pizza {

has $.diameter;

has @.toppings;

}

Food.pm

Pizza

S-Table

Under control

of REPR

Pizza.pm

S-Table

Meta-object

REPR

WHAT

V-table

Pizza MO

S-Table

...attr...

...attr...

parent

...attr... S-Table

Meta-object

REPR

WHAT

V-table

Food MO

S-Table

...attr...

...attr...

parent

...attr...

Food

S-Table

Under control

of REPR

Taking Rakudo Forward: What I'm Hacking On

class Food {

has $.hot;

has $.vegetarian;

}

use Food;

class Pizza {

has $.diameter;

has @.toppings;

}

Food.pm

Pizza

S-Table

Under control

of REPR

Pizza.pm

S-Table

Meta-object

REPR

WHAT

V-table

Pizza MO

S-Table

...attr...

...attr...

parent

...attr... S-Table

Meta-object

REPR

WHAT

V-table

Food MO

S-Table

...attr...

...attr...

parent

...attr...

Taking Rakudo Forward: What I'm Hacking On

Give every object and

every S-table a pointer to a

Serialization Context.

Taking Rakudo Forward: What I'm Hacking On

Object

S-Table

SC

Under control of

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

S-Table

Meta-object

REPR

WHAT

V-table

SC

Taking Rakudo Forward: What I'm Hacking On

When serializing, we visit

objects added to our SC.

If it’s not in an SC, serialize it

and visit its children.

If it already has an SC,

serialize a fixup (reference)

so we can link it.

Taking Rakudo Forward: What I'm Hacking On

VM

Portability

Taking Rakudo Forward: What I'm Hacking On

Today Rakudo only runs on

and targets the Parrot VM.

Just as Perl 5 supports many

platforms, in Perl 6 we want

to support many runtimes.

“Perl 6 should be available

everywhere.”

Taking Rakudo Forward: What I'm Hacking On

Small meta-model core

=

Small amount to port

Design is quite naturally

portable. \o/

Taking Rakudo Forward: What I'm Hacking On

Current Status

Taking Rakudo Forward: What I'm Hacking On

The core of the model has

been implemented.

Working representation

polymorphism.

First, working cut of an

implementation of classes.

Taking Rakudo Forward: What I'm Hacking On

Today, the core so far is

implemented on:

Parrot

.Net CLR

JVM

Taking Rakudo Forward: What I'm Hacking On

In the future there will

likely be more

but

don’t want to spread

limited development

resources too thin.

Taking Rakudo Forward: What I'm Hacking On

What now?

Taking Rakudo Forward: What I'm Hacking On

NQP

Finish filling out ClassHOW

Push it into the bootstrapped

NQP on Parrot

Implement serialization contexts

and serialization

Update NQP to use them

Taking Rakudo Forward: What I'm Hacking On

Rakudo

Get the grammar and actions to

run on the updated NQP

Re-write the meta-objects to

work with the new object model

Use serialization contexts

Debug until it works

Taking Rakudo Forward: What I'm Hacking On

.Net/JVM

Get ClassHOW to run

Get NQP tests to pass

Bootstrapped, self-hosting NQP

Get Rakudo to run there

Taking Rakudo Forward: What I'm Hacking On

Merci beaucoup!

Taking Rakudo Forward: What I'm Hacking On

Questions?

