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My previous talk:

Perl 6 from a 

user's perspective
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This talk:

Perl 6 from an 

implementer's 

perspective 
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This talk:

A peek inside

my brain
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Rakudo

Development 

Philosophy
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Start off by 

achieving wide 

feature coverage but 

low feature "depth"
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Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

OMG new grammar 
engine!
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Feature OO Regexes Built-ins

So Crap

Meh

Not so bad

Implementation
Awesomeness

Hey nice!

Better than
beer

Mmm....beer and 
hacking!
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Try to get something 

usable into user's 

hands earlier rather 

than later
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Rakudo *

Useful, usable release 

aimed at early adopters

Lots of nice features 

Various issues 
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Perl 

6.0.0

Rakudo * - a 

nice view 

point on the 

journey

Mu
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Focus of today's talk:

The work I'm doing to 

help us complete the 

next big part of the 

climb
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Introducing 

Meta-models:

A Story
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Once upon a time, I 

wrote a class.

class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0   ?? 'wtf' !!

$!lol-factor < 42  ?? 'lol' !!

'rofl');

}

}

}
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I thought 

my work 

was done, 

and I 

could go 

for a beer.
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But then 

my class 

started 

asking me 

questions...

OMG
WTF?!
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class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0   ?? 'wtf' !!

$!lol-factor < 42  ?? 'lol' !!

'rofl');

}

}

}

How was
I created?
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class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0   ?? 'wtf' !!

$!lol-factor < 42  ?? 'lol' !!

'rofl');

}

}

}

What does it mean to 
have methods?
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class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0   ?? 'wtf' !!

$!lol-factor < 42  ?? 'lol' !!

'rofl');

}

}

}

What does it mean
to inherit?
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class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0   ?? 'wtf' !!

$!lol-factor < 42  ?? 'lol' !!

'rofl');

}

}

}

Do other classes all 
behave like me?
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class Lolcat is Cat {

has $.caption;

has $!lol-factor;

method lol() {

say($!lol-factor < 0   ?? 'wtf' !!

$!lol-factor < 42  ?? 'lol' !!

'rofl');

}

}

}

What about prototype 
OO?
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Classes in Perl 6 are 

just one type of 

package.

We also have 

grammars and roles.
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…

token package_declarator:class {

:my $*PKGDECL := 'class';

<sym> <package_def>

}

token package_declarator:grammar {

:my $*PKGDECL := 'grammar';

<sym> <package_def>

}

token package_declarator:role {

:my $*PKGDECL := 'role';

<sym> <package_def>

}

…

STD.pm
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…

token package_declarator:class {

:my $*PKGDECL := 'class';

<sym> <package_def>

}

token package_declarator:grammar {

:my $*PKGDECL := 'grammar';

<sym> <package_def>

}

token package_declarator:role {

:my $*PKGDECL := 'role';

<sym> <package_def>

}

…

STD.pm
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All have methods, 

attributes, semantics for 

inheritance and 

composition, etc.

Many more 

commonalities than 

differences.
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Could bake the details 

deep in the 

implementation.

Not hackable, not 

extensible…and thus 

not Perl 6-like.



Taking Rakudo Forward: What I'm Hacking On

Idea!

Define an API and 

implement it for each 

type of package.
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OO API

Make the API actually be a set of 

methods on an object

Different type of package = 

different type of object

Tweak an existing package type 

by subclassing
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Implement the object 

model in terms of 

objects.

Extend the object 

model in terms of 

objects.
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Meta-object

An object that 

specifies how some 

other object works
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Meta-object Protocol

The set of methods 

that we implement in 

a meta-object
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::LolCat := ClassHOW.new_type(name => 'LolCat');

LolCat.^add_parent(Cat);

LolCat.^add_attribute(Attribute.new(

name => '$!caption', has_accessor => True

));

LolCat.^add_attribute(Attribute.new(

name => '$!lol-factor'

)); 

LolCat.^add_method('lol', method () {

...

});

LolCat.^compose();
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The 6model

Project
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Today's object 

implementation in 

Rakudo builds a layer 

on top of the Parrot 

built-in object model.
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Allowed us to get to 

something that works 

well enough quickly

but

We've hit limits of this 

approach
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 Semantic gap hurts 

 Hard to hack on or change

 Hard to reason about

 Tricky to port to other VMs

 Performance issues

 No easy path to implement

type-driven optimizations

 No easy path to implement

representation polymorphism
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Let's look at 
this with 

fresh eyes.
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Small object model core designed with 

serving Perl 6's needs at its heart
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Small object model core designed with 

serving Perl 6's needs at its heart

Learn from…

Moose SMOP

Static OO

Languages

Current 

Model

CLOS

Smalltalk

Academic 

Work
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So what do I want out 

of this process?
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Small

Low-Level Core

Write the rest

in Perl 6

(or a subset of it)
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Tension between 

"low-level and fast at 

runtime"

and

"high level, hackable, 

extensible and 

maintainable"



Taking Rakudo Forward: What I'm Hacking On

"What are the core 

primitives to try and 

get really fast?"
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Method dispatch in the 

common, optimizable

cases

Attribute access

Type checks

Object instantiation
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Don't need to worry 

quite so much over…
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Type construction 

(happens at compile time)

Role composition

Introspection

The uncommon cases
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Conclusions

Primitives will be:

Method dispatch

Attribute storage and lookup

Object allocation

Build everything else (classes, 

inheritance, roles, introspection) 

out of them
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Representation 

Polymorphism
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How do we represent an 

object in memory?

How do we store 

attributes?

How do we box/unbox

native types?
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These are all issues 

related to representation.

Perl 6 offers representation 

polymorphism, to allow 

classes to choose (or let 

the class user choose) a 

representation strategy.



Taking Rakudo Forward: What I'm Hacking On

Possible to leave a class open to 

being instantiated with different 

representations

“I want to store lots of these in an 

array” => bit-packed representation

“Just one, fast access” => typical 

word-aligned representation

class Color::RGB is repr(*) {

has uint8 $.red;

has uint8 $.green;

has uint8 $.blue;

} 
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Conclusions

We shall have two core APIs.

HOW API = control over dispatch, 

declarations, introspection

REPR API = control over object 

allocation, attribute storage (and 

if applicable, GC interaction)
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Gradual 

Typing
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sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information 

is there in this code?
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sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information 

is there in this code?

Cat
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sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information 

is there in this code?

Cat Any
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sub get_cat_from_rescue_center($type, $owner) {

my Cat $rescued = cat_search($type);

$rescued.owner = $owner;

return $rescued;

}

my $kitteh = get_cat_from_rescue_center(

'tabby', 'Anna');

How much type information 

is there in this code?

Cat Any Mu
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No extra 

type 

information 

provided

Fully 

Statically 

typed 

program

The compiler lets you 

choose how much 

type information to 

provide

and

tries to give you more 

benefits as you give 

it more information to 

work with
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A key place we can take 

advantage of type information 

is to optimize method 

dispatches

Normally, we look up methods 

in a hash table

Faster is to index into a v-table
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class Shape {

has $.name;

method area() { ... }

}

class Square is Shape {

method area($side) { $side ** 2 }

}

...

Copied v-table 

from Any

...

V-table for Shape
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class Shape {

has $.name;

method area() { ... }

}

class Square is Shape {

method area($side) { $side ** 2 }

}

...

Copied v-table 

from Any

...

area

name

V-table for Shape
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class Shape {

has $.name;

method area() { ... }

}

class Square is Shape {

method area($side) { $side ** 2 }

}

...

Copied v-table 

from Any

...

area

name

...

Copied v-table 

from Any

...

area

name

V-table for Shape V-table for Square

\

Copy
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Conclusions

Compiling method dispatches to 

v-table lookups means we need 

the meta-objects built and 

available at compile time

Single unified compile time and 

runtime MOP...

...and a place to hang a v-table
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The Model

So Far
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Object

...
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Object

Meta-object

REPR

Under control of 

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

?
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Object

Meta-object

REPR

WHAT

V-table

Under control of 

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

?

Objects are 

getting a 

little fat...
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Object

S-Table

Under control of 

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

S-Table

Meta-object

REPR

WHAT

V-table
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Bounded 

Serialization
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We build the meta-objects and

S-tables at compile time

but

We need them at runtime

Serialize (freeze) them at the end 

of the compile, and deserialize

(thaw) them at program startup
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One of the main reasons that 

Rakudo’s startup time is so bad 

today is that we have to 

construct all of the built-in types 

at startup.

Want to just serialize them all 

once and be able to quickly 

deserialize them each startup.
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Tricky  problem  is  tricky. 
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class Food {

has $.hot;

has $.vegetarian;

}

use Food;

class Pizza {

has $.diameter;

has @.toppings;

}

Food.pmPizza.pm



Food

S-Table

Under control 

of REPR
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Give every object and 

every S-table a pointer to a 

Serialization Context.
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Object

S-Table

SC

Under control of 

REPR

Meta-object

new_type

add_method

add_parent

add_attribute

compose

methods

parents

attributes

...

REPR

type_object_for

instance_of

get_attr

bind_attr

...

S-Table

Meta-object

REPR

WHAT

V-table

SC
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When serializing, we visit 

objects added to our SC.

If it’s not in an SC, serialize it 

and visit its children.

If it already has an SC, 

serialize a fixup (reference) 

so we can link it. 
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VM

Portability
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Today Rakudo only runs on 

and targets the Parrot VM.

Just as Perl 5 supports many 

platforms, in Perl 6 we want 

to support many runtimes.

“Perl 6 should be available 

everywhere.”
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Small meta-model core

=

Small amount to port

Design is quite naturally 

portable. \o/
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Current Status
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The core of the model has 

been implemented.

Working representation 

polymorphism.

First, working cut of an 

implementation of classes.
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Today, the core so far is 

implemented on:

Parrot

.Net CLR

JVM
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In the future there will 

likely be more

but

don’t want to spread 

limited development 

resources too thin.
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What now?
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NQP

Finish filling out ClassHOW

Push it into the bootstrapped 

NQP on Parrot

Implement serialization contexts 

and serialization

Update NQP to use them
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Rakudo

Get the grammar and actions to 

run on the updated NQP

Re-write the meta-objects to 

work with the new object model

Use serialization contexts

Debug until it works 
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.Net/JVM

Get ClassHOW to run

Get NQP tests to pass

Bootstrapped, self-hosting NQP

Get Rakudo to run there
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Merci beaucoup!
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Questions?


