Perl GKSignatTlres:
The Fulf Story™
= I LI 5

' =38l iR /It’ i ”
l i V(A .

= &\
u e
Jonathan Worthington = ‘

Perl 6 Sighatures: The Full Story

Some Basic
Examples

Perl 6 Sighatures: The Full Story

Some Basic

Examples
(From Perl 5 => Perl 6)

Perl 6 Sighatures: The Full Story

Positional Parameters

sub get coordinates ({
my ($city, S$Scountry) = @ ;

1 B

sub get coordinates ($city, $country) ({

}

Perl 6 Sighatures: The Full Story

Named Parameters

sub get capital {
my $params = @ ;
my Scountry = $params{'country'};

1 B

sub get capital (:$country) {

}

Perl 6 Sighatures: The Full Story

sub

sub

Slurpy Positionals

sort west to east {
return sort {
Sa->latitude <=> $b->latitude

}, @ ;

sort west to east(*@places) {
return (@places.sort({
S*a.latitude <=> $7b.latitude

}) s

Perl 6 Sighatures: The Full Story

sub

sub

By the way...

sort west to east(*Qplaces) {
return (@places.sort({
S*a.latitude <=> $”b.latitude

}) >,

...can also be written in Perl 6 as...

sort west to east(*Qplaces) {
return (@places.sort({ .latitude });

(like sorting on the mapped values)

Perl 6 Sighatures: The Full Story

And even prettier...

sub sort west to east(*@places) ({
return @places.sort({ .latitude });

...can also be written in Perl 6 as...

sub sort west to east(*@places) {
return (@places.sort(*.latitude);

(because *.foo generates a closure
like { $.foo })

Perl 6 Sighatures: The Full Story

Slurpy Nameds

sub sum distances {
my 3%place distances = @ ;
my Stotal = O;
$total += $ for values %place distances;

return Stotal;

sub sum distances (*%$place distances) ({
return [+] %place distances.values

Perl 6 Signatures: The Full Sto

Arity Checking
The Perl 6 runtime checks that
you passed enough parameters.

If you pass too few or too many,
an exception is thrown.

sub book train($from, Sto, S$Sdate, $time) {

}
book train('Kiev', 'Lviv', '2010-6-13'");

Not enough positional parameters passed; got 3 but expected 4

in 'book train' at line 1
in main program body at line 4

Perl 6 Sighatures: The Full Story

Optional Parameters

sub book train {
my (Sfrom, Sto, S$date, $time) = @ ;

1 B

sub book train($from, Sto, Sdate, $time?) {

}

Perl 6 Sighatures: The Full Story

Defaults

sub biggest city {
my Scountry
my S$rank

shift;
shift || 1;

1 B

sub biggest city($country, Srank = 1) {

}

Perl 6 Sighatures: The Full Story

Required Named

Parameters
While positional parameters are

required by default, named

parameters are optional by default.
To require one be passed, use !

sub book train(:$from!, :Sto!,
:Sdate!, :Stime) ({

Perl 6 Sighatures: The Full Story

Parameter
Binding

Perl 6 Sighatures: The Full Story

In Perl 5, you get a copy of the
arguments to work with in @ .

In Perl 6, parameters are
bound. This means that you
get a (by defualt) read-only

allas to the original value.

Perl 6 Sighatures: The Full Story

Read-only Alias
In Perl 6, this code will fail:

sub convert;purrency($amount, Srate) {
Samount = Samount * Srate;
return Samount;

}

my Sprice = 99;

$price = convert currency ($price, 11.1);
say S$price;

Cannot assign to readonly value
in 'convert currency' at line 2:test.pé6

in main program body at line 6:test.p6

Perl 6 Signhatures: The Full Sto

IS copy
To make this work like in Perl 5,
explicitly indicate we want a copy

sub convert currency ($amount is copy, S$rate) ({
Samount = $amount * Srate;
return S$amount;

}

my Sprice = 99;
$price = convert currency ($price, 11.1);
say Sprice;

1098.9

Perl 6 Sighatures: The Full Sto

IS rw
Can also modify the original
without having to pass areference

sub convert_purrency(Samount is rw, Srate) {
Samount = S$amount * S$rate;

}

my $price = 99;
convert currency (Sprice, 11.1);
say Sprice;

1098.9

Perl 6 Signatures: The Full Sto

Passing Arrays / Hashes

In Perl 6, passing an array or hash
works like passing a reference.

sub example (@Qarray, %hash) {
say (@array.elems;
say %hash.keys.join(', ')

}

my @numbers = 1,2,3,4;
my %ages = Jnthn => 25, Noah => 120;

example (@numbers, %ages) ;

4
Noah, Jnthn

Perl 6 Sighatures: The Full Story

Perl 6 Sighatures: The Full Sto

What are types?

In Perl 6, every value knows its type.

say 42 .WHAT;

say ''camel" .WHAT;

say [1, 2, 3] .WHAT,;

say (sub ($n) { $n * 2 }) .WHAT;

Int ()
Str ()

Array ()
Sub ()

A type name in Perl 6 represents all
possible values of that type.

Perl 6 Signatures: The Full Story

Type Constraints

Can restrict a parameter to only accept
arguments of a certain type.

sub show dist(Str $from, Str $to, Int S$kms) ({
say "From $from to $to is $kms km.";

}

show dist('Kiev', 'Lviv',6 469);

show dist (469, 'Kiev', 'Lviv');

From Kiev to Lviv is 469 km.
Nominal type check failed for parameter '$from'; expected Str

but got Int instead
in 'show dist' at line l:test.p6
in main program body at line 5:test.p6

Perl 6 Signhatures: The Full Sto

Type Coercions

Sometimes, you want to accept any

type, but then transform it into another
type before binding to the parameter

sub show dist($from, S$to, S$kms as Int) ({
say "From $from to $to is S$kms km.";

}

show dist('Kiev', 'Lviv', '469');

show dist('Kiev', 'Lviv', 469.35);

From Kiev to Lviwv is 469 km.
From Kiev to Lviwv is 469 km.

Perl 6 Signatures: The Full Story

Constraints

Sometimes, you need to do some more
powerful validation on arguments.

sub discount ($price, S$Spercent
where (1 <= S$percent <= 100)) {
say "You get $percent% off! Pay EUR " ~
Sprice - (Sprice * $percent / 100) ;
}
discount (100, 20);
discount (100, 200) ;

You get 20% off! Pay EUR 80
Constraint type check failed for parameter '$percent'’

in 'discount' at line 2:test.p6
in main program body at line 7:test.p6

Perl 6 Sighatures: The Full Story

Warning!
Be careful about using type constraints

on arrays and hashes. The type
constraints the elements.

sub total (Array (@distances) ({

WRONG! Takes an Array of Arrays!
}

sub total (Int @distances) {
Correct, takes an array of Ints.

}

Perl 6 Sighatures: The Full Story

Multiple
Dispatch

Perl 6 Sighatures: The Full Story

In Perl 6, you can write many
subs with the same name but
different signatures.

When you call the sub, the
runtime will look at the types
of the arguments and pick the

best match.

Perl 6 Sighatures: The Full Story

Dispatch By Arity
Example (from Test.pm): dispatch by
different number of parameters

multi sub todo($reason, S$count) is export ({
$todo upto test num = Snum of tests run + Scount;
$todo reason = '# TODO ' ~ $reason

}

multi sub todo($Sreason) is export {
$todo upto test num = $num of tests run + 1;
$todo reason = '# TODO ' ~ $reason

Perl 6 Sighatures: The Full Story

Dispatch By Type
Example: part of a JSON emitter

multi to-json(Array S$a) {
return '[' ~
$a.values.map({ to-json($) }).join(', ') ~
B I
}
multi to-json(Hash $h) {
return '{ ' ~
Sh.pairs.map ({
to-json(.key) ~ ': ' ~ to-json(.value)
})°j°in('r ') ~
B

Perl 6 Sighatures: The Full Story

Dispatch By Constraint
Can use multiple dispatch with
constraints to do a lot of "write what
you know" style solutions

Perl 6 Sighatures: The Full Story

Factorial:

Perl 6 Sighatures: The Full Story

Factorial:
fact(0) = 1

Perl 6 Sighatures: The Full Story

Factorial:
fact(0) = 1
fact(n) = n * fact(n - 1)

Perl 6 Sighatures: The Full Story

Factorial:
fact(0) =1
fact(n) = n * fact(n - 1)

multi fact(0) { 1 }
multi fact($n) { $n * fact(S$n - 1) }

Perl 6 Signatures: The Full Story

Factorial:
fact(0) =1
fact(n) = n * fact(n - 1)

multi fact((0)) { 1 }
multi fact($k) { $n * fact($n - 1) }

(Int $ where 0)

Perl 6 Sighatures: The Full Story

Fibonacci Sequence:
fin(0) =0
fib(1) =1
fio(n) =fib(n = 1) + fib(n — 2)

Perl 6 Sighatures: The Full Story

Fibonacci Sequence:
fin(0) =0
fib(1) =1
fio(n) =fib(n = 1) + fib(n — 2)
multi £ib(0) { 0 }

multi £ib(1) { 1 }
multi fib($n) { fib($n - 1) + fib($n - 2) }

Perl 6 Sighatures: The Full Story

Nested
Signatures

Perl 6 Signatures: The Full Story

Captures
A set of parameters form a signature.
A set of arguments from a capture.

Signature
l

|]
sub greet (Sname, :Sgreeting = 'Hi') ({
say "$greeting, Sname!";

}
greet ('Jlera', greeting => 'llpumBerT') ;
\ J

Y
Capture

Perl 6 Sighatures: The Full Story

Coercing To Captures
It IS possible to coerce arrays, hashes
and other objects into captures.
Array elements => positional arguments

Hash pairs => named arguments

Object attributes => named arguments

Perl 6 Sighatures: The Full Story

Unpacking Arrays
Can extract elements from within an
array, to do FP-style list processing

sub head([S$Shead, *@tail]) {
return Shead;

}

sub tail([$head, *Q@tail]) {
return (@Qtail;

}

my (@example = 1,2,3,4;

say head (Qexample) ;

say tail (@example) ;

1
234

Perl 6 Signatures: The Full Story

Unpacking Hashes
Can extract values by key

sub show place((:$name, :$lat, :Slong, *%rest)) {

say "$name lies at $lat,$long.";

say '"Other facts:";

for %$rest.kv -> S$title, Sdata {

say " Stitle.ucfirst(): Sdata";

}
}
my %info = name => 'Kiev', lat => 50.45,

long => 30.52, population => 2611300;

show place (%info) ;

Kiev lies at 50.45,30.52.
Other facts:

Population: 2611300

Perl 6 Sighatures: The Full Story

Unpacking Objects
Can extract values by attribute (only
those that are declared with accessors)

sub nd($r as Rat (:$numerator, :$denominator)) {
say "$r = Snumerator/S$denominator";

}

nd (4.2) ;

nd (3/9) ;

4.2 = 21/5
0.333333333333333 = 1/3

Perl 6 Sighatures: The Full Story

Unpacking + Multiple Dispatch
When using multiple dispatch, whether
we can unpack a parameter or not
works like a constraint.

Therefore we can do multiple dispatch
based upon the shape and values
iInside of complex data structures.

Perl 6 Sighatures: The Full Story

Example: Quicksort

Perl 6 Sighatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Perl 6 Signatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {

}

Perl 6 Sighatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
Partition.
my (@before
my @Qafter

rest.grep (* < $pivot);
rest.grep (* >= $pivot) ;

@ @

Perl 6 Sighatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
Partition.
my (@before
my @Qafter

= @rest.grep(* < S$pivot);

= @rest.grep(* >= $pivot);

Sort the partitions.

(quicksort (@before), Spivot, quicksort(@after))

Perl 6 Sighatures: The Full Story

Conclusions

Perl 6 Sighatures: The Full Story

Not Just Replacing @ _
Perl 6 signatures provide you with a
neater way to handle arguments
passed to subs and methods than
working with @ .

However, they offer a lot more power,
and have applications beyond where
you would traditionally use a signature.

Perl 6 Sighatures: The Full Story

"When?"

All of the examples shown today are
already working in Rakudo Perl 6.

Signature handling and multiple
dispatch are amongst the most mature
and stable parts of Rakudo.

Perl 6 Sighatures: The Full Story

Cnacubo

Perl 6 Sighatures: The Full Story

Questions?

