
Rakudo

The story of a compiler

Jonathan

Worthington

Rakudo

Development

History

Started by Patrick

Michaud around 2005

Not called Rakudo until

around January 2008;

was just “Perl 6 on

Parrot”

Key insight:

Perl 6 should be parsed

by Perl 6

Perl 6 should be largely

implemented in Perl 6

(or a subset of it)

First Steps

First Steps

PGE (Perl 6
Grammar
Engine)

First Steps

PGE (Perl 6
Grammar
Engine)

Parrot Compiler
Toolkit (AST,
code gen.)

First Steps

PGE (Perl 6
Grammar
Engine)

Parrot Compiler
Toolkit (AST,
code gen.)

Not Quite Perl

First Steps

PGE (Perl 6
Grammar
Engine)

Parrot Compiler
Toolkit (AST,
code gen.)

Not Quite Perl

Rakudo Perl 6 Compiler

In summer 2008...

I went to OSCON

Met Patrick Michaud for

the first time

Here’s what happened...

Jonathan

At some party...

Jonathan

At some party...

Hey, beer!

Jonathan

At some party...

Hey, more beer!

Jonathan

At some party...

Implementing junctions in Perl 6 sounds
interesting. I’ll have a go at it.

Patrick, and
others...

Tip:

If you don’t know how

hard it is to implement

something...

...be very careful about

saying you will do it. 

Junctions

Type
system

Multiple
dispatch

Signature
binding Classes

Hack hack hack...

Over the following year we

implemented many, many

features.

Good progress, but...

Problems

Significant changes to parsing,

thanks to STD arriving

PGE and PCT didn’t integrate so

well, creating hard to fix bugs

Complexity was making it hard to

make more progress

ng

“next generation”

ng

“next generation”

Parrot Compiler Toolkit
(AST, regex compilation, code generation)

ng

“next generation”

Parrot Compiler Toolkit
(AST, regex compilation, code generation)

Not Quite Perl
(Now bootstrapping)

ng

“next generation”

Parrot Compiler Toolkit
(AST, regex compilation, code generation)

Not Quite Perl
(Now bootstrapping)

Rakudo Perl 6 Compiler

ng

Fixed many long-standing issues

Also was the first time lazy lists

were introduced to Rakudo

A lot of progress, but some

regressions from “alpha” (the

original branch)

Lazy Lists

Really hard to add lazy lists to

Perl without surprising people in

bad ways

Too lazy  weird action at a

distance

Not lazy enough  uses to much

memory, or hangs too easily

Lazy Lists

After several designs that failed

to work, settled on an immutable

iterator model

Resolved the majority of the

semantic issues

Initial implementation slow

Rakudo

Star

Distributions

Users tend to want more than

just a compiler – they want some

modules, module installation

tools, documentation, etc.

We borrow the notion of

“distributions” from Linux

Rakudo Star

Our first series of distribution

releases

Aim: attract a wider user base

Separate release schedule and

release managers from compiler

releases

Did Well On Features

Chained Comparisons Junctions

Classes Signatures Grammars

Perl 6 Regexes Multi-dispatch

Lazy Lists Series Operator

Roles Introspection Traits

Meta-Operators Feeds MAIN

Smart-matching Modules

Native Library Calls Book

Got more...

Users

Modules

Bug Reports

Contributors

But it wasn’t all good news...

Most things run slowly.

Some run glacially slowly.

High memory usage - both base

amount and when running

Various unhelpful errors and

failure modes

Make it work

THEN

Make it fast

The quick way to implement

a feature with the correct

semantics is very rarely

the optimal one.

Didn't want to waste time

making the wrong thing fast.

Correct FastHard

Now the development

focus is changing.

Many implemented features

now relatively stable.

Missing features aren't our

main adoption blocker, but

speed and memory usage are.

Current

Work

alpha ng nom

We are here

nom

“new object model”

Replaces the core objects

implementations with something

that performs far better

Both speed improvements and

memory usage reduction

“nom” branch

Rebuild primitives on top of the

new object model

In parallel, a big cleanup of the

setting and many performance

improvements there too

Many more fixes, a few new

features

Why is current Rakudo

slow?

Various primitives are slow,

meaning that everything runs

slowly

No optimizer, and not enough

information at compile time to

write a good one

Performance

Improvements

Two sets of performance

improvements

First set is just from starting to

use the new object model

Second set will come from the

optimizer that we will build

Status

Going very well, but still some

work to come

Aim to deliver compiler release

from “nom” branch in July

Rakudo Star distribution release

with it should come in August

Inside

Rakudo

Compiler
Grammar, Actions,

Symbol Table,
Module Loader

Metamodel
Classes, roles,
subset types,
OO bootstrap

VM Glue
Signature binder
Multi-dispatcher

Low level guts

CORE.setting
Operators

Built-in classes
Built-in functions

Languages: NQP C Perl 6

The Next

Year

Optimizer

Key optimizations:

Statically deciding multi-dispatch

Inlining (especially operators)

Type Inference

Aim to deliver an optimizer by the

October release

LTM

Many performance improvements

so far have aimed at runtime

performance

Longest Token Matching support

will make Perl 6 grammars parse

faster – meaning that we can

parse Perl 6 faster

Bugs and Stability

Focus on fixing bugs, and

keeping the bug queue to a

reasonable size

Focus on providing a stable

platform for developing modules

and applications

Backends

Want Rakudo to run on and

generate code for multiple VMs

Already some initial work for the

.Net CLR / Mono, and for the JVM

Also interest in targeting v8

(Javascript)

Thank you!

Questions?

More on Perl 6: perl6.org

Rakudo: rakudo.org

Blog: 6guts.wordpress.com

Slides: jnthn.net/articles.shtml

