
Implementing Classes

in 15 Minutes

Jonathan Worthington

Reflection

Finding out what methods,

parents etc an object has

Reflection

Finding out what methods,

parents etc an object has

When it comes to meta-objects

that’s only part of the story.

Meta-objects

Objects that describe the way

other objects work

Not just for introspection, but

for implementation

Class behaviour is just defined

in the class meta-object

It’s easy!

Meta-objects have methods

that respond to various

“events” that occur as we

compile a package

Implementing classes

=

Writing methods

Example

class Stroopwafel is Cake {

has $!stroop;

method eat() {

say “om nom nom”;

}

}

Example

class Stroopwafel is Cake {

has $!stroop;

method eat() {

say “om nom nom”;

}

}

new_type

Example

class Stroopwafel is Cake {

has $!stroop;

method eat() {

say “om nom nom”;

}

}

add_parent

Example

class Stroopwafel is Cake {

has $!stroop;

method eat() {

say “om nom nom”;

}

}

add_attribute

Example

class Stroopwafel is Cake {

has $!stroop;

method eat() {

say “om nom nom”;

}

}

add_method

Example

class Stroopwafel is Cake {

has $!stroop;

method eat() {

say “om nom nom”;

}

}

compose

New Type

Create a type object

Provide default name and

default representation

method new_type(:$name = '<anon>',

:$repr = 'P6opaque') {

my $metaclass := self.new(:name($name));

nqp::type_object_for($metaclass, $repr);

}

Methods

Need a place to store them...

And a way to add them...

has %!methods;

method add_method($obj, $name, $code) {

if %!methods{$name} {

die(“Duplicate method $name”);

}

%!methods{$name} := $code_obj;

}

Attributes

Need a place to store them...

And a way to add them...

has %!attributes;

method add_attribute($obj, $attr) {

if %!attributes{$attr.name} {

die(“Duplicate attribute “ ~

$attr.name);

}

%!attributes{$attr.name} := $attr;

}

Inheritance

A place to store it

And a way to add it...

has $!parent;

has $!parent_set;

method add_parent($obj, $parent) {

if $!parent_set {

die(“Can only have one parent”);

}

$!parent := $parent;

$!parent_set := 1;

}

Composition

When we’re finished declaring

the class, need to compute

MRO and compose attributes

has @!mro;

method compose($obj) {

@!mro := self.compute_mro($obj);

for %!attributes.values {

$_.compose($obj);

}

}

MRO

Method Resolution Order

The order we walk classes

when looking for methods

Easy for single inheritance;

just walk up the list of parents

MRO

Protocol wants us to have a

parents method that returns a

list of parents (will be 0 or 1

items for single inheritance)

method parents($obj) {

$!parent_set ?? [$!parent] !! []

}

MRO

Then use that to compute the

method resolution order

method compute_mro($obj) {

my @mro;

my @cur_parent := [self];

while @cur_parents {

my $p := @cur_parents[0]

@mro.push($p);

@cur_parents := $p.HOW.parents($p);

}

return @mro;

}

Dispatch

Meta-object should expose the

methods it knows about

method method_table($obj) {

%!methods

}

Dispatch

Implement method dispatch

with MRO and method_table

method find_method($obj, $name) {

for @!mro {

my %meths := $_.HOW.method_table($obj);

my $found := %meths{$name};

if defined($found) {

return $found;

}

}

nqp::null() # As not found sentinel

}

That’s it!

We’ve now implemented all

that we need to have classes

that support:

Methods and dispatch

Attributes

Single inheritance

Well, nearly...

We’ve missed various things

out of this...

Various bits of introspection

Publishing method cache

isa and can methods

NQPClassHOW

Implementation of a subset of

Perl 6’s class support, so far

as NQP needs to have it

Goal is that this will look

identical for running on

Parrot, .Net CLR, JVM, etc.

Dank je wel!

Questions?

