
"Rakud'oh!"

Making our compiler smarter

Jonathan

Worthington

Rakudo *

Rakudo *

What we were working

towards last time I was here

at the Dutch Perl Workshop

Rakudo *

Released last summer

Rakudo *

Plenty to be happy about…

Gave people a feel for the

power and beauty of Perl 6

Covered A Wide Range of

Perl 6 Features

Chained Comparisons Junctions

Classes Signatures Grammars

Perl 6 Regexes Multi-dispatch

Lazy Lists Series Operator

Roles Introspection Traits

Meta-Operators Feeds MAIN

Smart-matching Modules

Native Library Calls Book

Led to some weird areas of the

spec getting worked out

Release attracted more people

to the Perl 6 community

Rakudo *

…but plenty of weaknesses

Most things run slowly.

Some run glacially slowly.

High memory usage - both base

amount and when running

Various unhelpful errors and

failure modes

Weak in areas of language

extensibility

Make it work

THEN

Make it fast

Many things needed

a few tries to get

them correct.

(A few things needed many

tries to get them correct.)

The quick way to implement

a feature with the correct

semantics is very rarely

the optimal one.

Didn't want to waste time

making the wrong thing fast.

Correct FastHard

Now the development

focus is changing.

Many implemented features

now relatively stable.

Missing features aren't our

main adoption blocker, but

speed and memory usage are.

Some things in Rakudo today

just make you say "D'oh!"

Need to make Rakudo

smarter

More analysis on the code

that is being compiled

More awareness of the

context of the compilation

Compile

Time

Run

Time

The traditional view

Compile

Time

Run

Time

The Perlish view

Some of the

we're working on

fixing now

D'oh!

Boxed constants

created every usage

$x = 42;

Should construct them once at

compile time and stash them

away in a constants table

Speed win: less time making

objects, less GC churn

Overweight Types

How many GC-able objects

should a boxed integer be?

Overweight Types

How many GC-able objects

should a boxed integer be?

Today, three…

Rakudo Int

Object

Attribute

Store

Parrot

Integer PMC

Overweight Types

How many GC-able objects

should a boxed integer be?

Today, three…

Should, of course, be one.

It will be. Less memory, less to

allocate, less GC churn.

Rakudo Int

Object

Attribute

Store

Parrot

Integer PMC

Slow Type Checks

Today, doing a type check tends

to involve a method call and/or

a bunch of named lookups

High cost for a relatively

common operation

In new OO implementation, usually

just a few pointer comparisons

Attribute Access

Anyone spot the typo?

class Golf {

has $!player;

has $!tee;

method play() {

$!player.goto($!pee);

}

}

Attribute Access

Anyone spot the typo?

Should detect and report at

compile time, not runtime.

(Even for custom meta-objects.)

class Golf {

has $!player;

has $!tee;

method play() {

$!player.goto($!pee);

}

}

Attribute Access

Often, we can map attributes to

slot indexes at compile time.

Then attribute access will be

mostly pointer follows, rather

than needing to do hash lookups

…

has $!player; 0

has $!tee; 1

… …

Too Many Allocations

Various common operations

currently end up allocating an

object as they do their work

Multi-dispatch cache lookups

Method lookups

They will stop doing so. Making

them faster, and less GC churn.

Type info not used

Will this code ever work?

my Int $x = 4.2;

Type info not used

Will this code ever work?

No, so complain about it at

compile time!

Today that's harder to implement than it

should be. Soon we'll have the

infrastructure to do so.

my Int $x = 4.2;

Type info not used

Which multi-dispatch candidate

will be called here?

Can decide at compile time!

Important since all built-in

operators are multi-dispatch

(So it's a pre-requisite for inlining.)

multi foo(Int $x) { 1 }

multi foo(Num $x) { 2 }

my Int $x = something();

foo($x);

Type info not used

The new method is defined in the

top type; all objects have one

Construct a v-table and dispatch

such method calls by index

my $snack = Stroopwafel.new();

callmeth "new" callmeth 2

ACCEPTS CODE

Bool CODE

new CODE

… …

CODE

CODE

CODE

…

Type info not used

The more type information we

have in a program, the more

calls we will be able to optimize

Which is how gradual typing is

supposed to work

(BTW, the same approach can be used to

implement a pragma that warns about

calling unknown methods.)

Dumb lexical access

We statically know where to find

a lexical variable - but today we

walk scopes looking for names

"2 scopes down, in slot 0"

my $kitten-mass = 0;

for @cats -> $cat {

if $cat.is_kitten {

$kitten-mass += $cat.mass;

}

}

Leaky Extensions

Currently, language tweaks

always end up global

Should actually be lexically

scoped (so the 5! fails to parse)

{

sub postfix:<!>($n) { [*] 1..$n }

say 10!;

}

say 5!;

Leaky Extensions

While this was a contrived

example, knowing exactly which

language we're parsing is an

important part of keeping Perl 6

sanely extensible.

The same set of changes should

open the door to implementing

macros too.

And the list goes on…

Lots we can do to make

common things faster.

Optimize the building

blocks that all programs

are made from.

Later, still plenty of clever

optimizations to explore.

Dank je wel!

Questions?

