
Inside A Compiler

Jonathan Worthington

Compiler Hacker

Rakudo Perl 6 core developer

Compiler toolkit core

developer

Focus on the object model,

type system, multiple

dispatch and backends

Traveller

I love to travel. Especially to

open source events. 

Beer Drinker

Beer is tasty.

I drink it.

\/

Perl 6

Mutable grammar means we really

need to parse Perl 6 using a Perl 6

grammar  grammar engine

Pluggable object model  need

meta-object programming support

Runs everywhere  need to generate

code for many backends

...

What we need in Perl 6 is pretty

much what you need to write

compilers anyway

From the start of Rakudo, those

parts have been factored out

Thus, we have an actively

developed, growing compiler

toolkit for others to use, whether

they care about Perl 6 or not 

What Compilers Do

Take input in one language...

...and produce output in

another, lower level language.

(Hopefully, the output has some semantic

relationship with the input )

Trees

Working with code as text is slow

and difficult, so compilers tend to

prefer to work with trees

Source Code

Parse Tree

(more trees built here)

Code In Target Language

Parsing

Code Generation

Tree Example

num_beers * cost_per_beer + service_fee

+

*

service_feecost_per_beernum_beers

Parse Tree

A tree representation of the source

language; closely related to it

Abstract Syntax Tree

Represents the semantics of the

program; a step away from the actual

syntax

Backend Tree

Tree representation that is close to

the target language; final step before

doing code generation

Traditional View

Parse tree



AST



Backend tree

Dynamic Language Reality

Need to do bits of runtime

during compile time

(Parrot) Compiler Toolkit

Created as part of the Rakudo

Perl 6 compiler project, but not

at all Perl 6 specific

Grammar engine

Set of AST nodes (PAST)

AST  Intermediate Language

Compiler Infrastructure

NQP

“Not Quite Perl (6)”

Very small subset of the Perl 6

language that’s ideal for

writing compilers, especially

parse tree to AST mapping

NQP compiler is implemented

in NQP (bootstrapped)

To create a language...

Write a grammar for it

Write “action methods” to map

parse tree to AST

Write built-in types/functions

Optionally, write meta-objects

to implement OO features

TinyLang

We’re going to build a very

little language with...

String literals

A writeline built-in

String concatenation

Variables and binding

Classes with methods

TinyLang

Aim: run this little program

var dog_noise = "woof“;

a Dog {

can bark {

writeline(dog_noise ~ " " ~ dog_noise)

}

};

var fido = new(Dog);

fido.bark;

var puppy = new(Dog);

dog_noise = "yap“;

puppy.bark;

Getting Started

Stub in grammar, actions and

compiler classes, inheriting from

HLL base classes

use HLL;

class TinyLang::Grammar is HLL::Grammar {

}

class TinyLang::Actions is HLL::Actions {

}

class TinyLang::Compiler is HLL::Compiler {

}

Getting Started

Create a MAIN sub

(the compiler entry point)

sub MAIN(*@ARGS) {

Create and configure compiler object.

my $tlcomp := TinyLang::Compiler.new();

$tlcomp.language('tinylang');

$tlcomp.parsegrammar(TinyLang::Grammar);

$tlcomp.parseactions(TinyLang::Actions);

Enter the compiler.

$tlcomp.command_line(@ARGS,

:encoding('utf8'));

}

TOP

The grammar rule named TOP is

the one that is called first when

starting to parse

For now, it’ll parse a list of terms

separated by “;”

rule TOP { <term> ** ';' }

Syntactic Categories

Programs often contain many

items of the same “type”, e.g.

Infix operators

Terms

Literal values

We make these explicit in our

grammar using “proto regexes”

Terms

For now, our terms will either be

values or a call to a built-in

Argument list is terms separated

by commas

proto token term { <...> }

token term:sym<call> {

<ident> '(' <arglist> ')„

}

token term:sym<value> { <value> }

rule arglist { <term> ** ',' }

Values

Most languages have many types

of literal value (strings, integers,

floating point numbers)

For TinyLang, we just do strings

(quote_EXPR, inherited from HLL::Grammar, is an

extensible quote parser)

proto token value { <...> }

token value:sym<string> { <?["]> <quote_EXPR> }

Parsing Works!

Run the compiler with

--target=parse

> "foo”

"parse" => PMC 'Regex;Match' => "\"foo\"\n" @ 0 {

<term> => ResizablePMCArray (size:1) [

PMC 'Regex;Match' => "\"foo\"" @ 0 {

<value> => PMC 'Regex;Match' => "\"foo\"" @ 0 {

<quote_EXPR> => PMC 'Regex;Match' => "\"foo\"" @ 0 {

...

}

}

}

]

}

AST

Every time a parsing rule

completes, we run an action

method from the actions class

Method produces an AST node

and associates it with the

grammar match object

Parse top down, build AST

bottom up

Values

The action method is easy –

quote_EXPR’s action method in

HLL::Actions does the work for

us, so just use whatever it made

method value:sym<string>($/) {

make $<quote_EXPR>.ast;

}

Argument List

Loop over all of the terms and

get their AST, and push each one

into a container PAST::Op node

method arglist($/) {

my $args := PAST::Op.new();

for $<term> {

$args.push($_.ast);

}

make $args;

}

Terms

Value – use value’s AST

Built-in call: twiddle the PAST::Op

node made by arglist

method term:sym<value>($/) {

make $<value>.ast;

}

method term:sym<call>($/) {

my $call := $<arglist>.ast;

$call.pasttype('call');

$call.name(~$<ident>);

make $call;

}

TOP

Need to run each term in order

Put the AST for each of them into

a PAST Statements node

Built-in call: twiddle the PAST::Op

node made by arglist

method TOP($/) {

my $program := PAST::Stmts.new();

for $<term> {

$program.push($_.ast);

}

make $program;

}

Built-in

We just use the NQP say function

to implement our writeline

built-in

our sub writeline($message) {

say($message);

}

It works!

The compiler toolkit knows how

to map PAST nodes to

intermediate code for the VM

We now have a working compiler

> writeline("hello"); writeline("Taipei");

hello

Taipei

Operators

So far our parsing has been

roughly recursive descent

Not good for parsing operators at

various precedence levels

HLL::Grammar provides EXPR, a

configurable operator parser

Concatenation

Need to configure the OPP...

...and add a rule for parsing ~

INIT {

Precedence levels (just one so far).

TinyLang::Grammar.O(':prec<z=>,

:assoc<left>', '%concatenation');

}

token infix:sym<~> {

<sym> <O('%concatenation')>

}

Concatenation

For the action method, we make

a PAST::Op node that will call the

VM’s concat op

method infix:sym<~>($/) {

make PAST::Op.new(:pirop('concat Sss'));

}

term  EXPR

Finally, anywhere we used to

parse a term, we now switch to

parsing an expression (EXPR will

call term for us as needed)

(We update action methods to match.)

rule TOP { <EXPR> ** ';' }

rule arglist { <EXPR> ** ',' }

It works!

Now have working concatenation

Can view VM’s intermediate code

with --target=pir

> writeline("Taipei " ~ "101”)

Taipei 101

concat $S296, "Taipei ", "101"

"writeline"($S296)

Binding

Update operator precedence

parser to also know about =

INIT {

Precedence levels.

TinyLang::Grammar.O(':prec<z=>,

:assoc<left>', '%concatenation');

TinyLang::Grammar.O(':prec<y=>,

:assoc<right>', '%assignment');

}

token infix:sym<~> { <sym> <O('%concatenation')> }

token infix:sym<=> { <sym> <O('%assignment')> }

Binding

Add an action method; PAST

compiler knows how to compile a

bind operation, so just use that

method infix:sym<=>($/) {

make PAST::Op.new(:pasttype('bind'));

}

Symbol Tables

We tend to have variables with

different scopes (lexical,

package, attribute, etc.)

Need to have a symbol table to

map names to scopes

PAST::Block provides this

capability – but we need to use it!

Block Refactor

Action methods need a block

stack to know the current block

And a method to create a

PAST::Block node when we are

starting a new block (e.g. scope)

my @BLOCK;

method newblock($/) {

@BLOCK.unshift(PAST::Block.new());

}

Block Refactor

Update grammar and actions so

that we wrap the program in a

block, not a statements node

rule TOP { <.newblock> <EXPR> ** ';‟ }

token newblock { <?> }

method TOP($/) {

my $program := @BLOCK.shift;

for $<EXPR> {

$program.push($_.ast);

}

make $program;

}

Variable

Declarations

Add variable_declaration

grammar rule and action method

rule variable_declaration { 'var' <ident> }

method variable_declaration($/) {

my $name := ~$<ident>;

@BLOCK[0].symbol($name, :scope('lexical'));

make PAST:Var.new(:name($name), :isdecl(1));

}

Variable

References

Add variable grammar rule and

action method

token variable { <ident> }

method variable($/) {

make PAST::Var.new(:name(~$<ident>));

}

Terms Update

Need to add variable declarations

and references as terms

token term:sym<var> { <variable> <![(]> }

token term:sym<decl> { <variable_declaration> }

method term:sym<var>($/) {

make $<variable>.ast;

}

method term:sym<decl>($/) {

make $<variable_declaration>.ast;

}

It works!

Note how we can now start to

naturally mix the language

features that we have

implemented 

> var city = "Taipei";

var emo = "love";

writeline("I " ~ emo ~ " " ~ city ~ "!”);

I love Taipei!

Our Progress

We now implemented all of the

non-OO features of TinyLang

Excluding comments and blank

lines, we have only 88 lines of

code!

\/

6model

Previous generations of the

compiler toolkit left OO to the

compiler writer and VM

Latest NQP includes “6model” OO

core, which offers:

Meta-object Programming

Gradual Typing Support

Representation Polymorphism

Meta-objects

Meta-objects have methods

that respond to various

“events” that occur as we

compile a package

Implementing classes

=

Writing methods

a Dog {

can bark {

writeline("woof")

}

};

Example

a Dog {

can bark {

writeline("woof")

}

};

Example

new_type

a Dog {

can bark {

writeline("woof")

}

};

Example

add_method

a Dog {

can bark {

writeline("woof")

}

};

Example

compose

TinyLang Class

new_type, compose and name

class TinyLangClass {

has $!name;

method new_type(:$name = '<anon>') {

my $metaclass := self.new(:name($name));

nqp::repr_type_object_for($metaclass,

'HashAttrStore');

}

method compose($obj) {

return $obj;

}

method name($obj) {

return $!name;

}

}

Statements

We’ll do a little refactor to

distinguish terms and statements

(Action methods updated to match the changes.)

rule TOP { <.newblock> <statement> ** ';„ }

token newblock { <?> }

proto token statement { <...> }

token statement:sym<EXPR> { <EXPR> }

Class Parsing

For now, we’ll just parse “a”, the

name of the class and the block

rule statement:sym<class> {

'a' <ident>

'{'

'}'

}

Class Actions

We generate code that makes the

appropriate method calls on our

meta-object.

...

Does TinyLangClass.new_type(:name($name))

PAST::Op.new(

:pasttype('callmethod'), :name('new_type'),

PAST::Var.new(:name('TinyLangClass'),

:scope('package')),

PAST::Val.new(:value(~$name),

:named('name'))

)

...

Built-ins

We’ll add “new” and “typeof”

built-ins

(.HOW is an NQP macro that gets an object’s meta-object.)

our sub new($type) {

return nqp::repr_instance_of ($type)

}

our sub typeof($obj) {

return $obj.HOW.name($obj)

}

It works!

We can now declare a class,

create an instance of it and get

its name using typeof

> a Beer { };

var budweiser = new(Beer);

writeline(typeof(budweiser));

Beer

Methods

First, we update our meta-object

to support methods

has %!methods;

method add_method($obj, $name, $code) {

%!methods{$name} := $code;

}

method find_method($obj, $name) {

return %!methods{$name}

}

Method Parsing

Note that we call <.newblock> so

that variables declared inside the

method are local to it

Action method calls .add_method

on the meta-object.

proto token class_body_item { <...> }

rule class_body_item:sym<method> {

'can' <ident>

<.newblock>

'{' <statement> ** ';' '}‟

}

get_global $P802, "TinyLangClass”

$P803 = $P802."new_type"("Cow" :named("name"))

.lex "Cow", $P803

find_lex $P804, "Cow”

get_how $P805, $P804

.const 'Sub' $P808 = "213_1301185815.657”

capture_lex $P808

$P805."add_method"($P804, "moo", $P808)

find_lex $P810, "Cow”

get_how $P811, $P810

$P811."compose"($P810)

a Cow { can moo { writeline("moo") } }

Example

Compiles to:

woof woof

yap yap

And we’re done!

Our original example runs:

var dog_noise = "woof“;

a Dog {

can bark {

writeline(dog_noise ~ " " ~ dog_noise)

}

};

var fido = new(Dog);

fido.bark;

var puppy = new(Dog);

dog_noise = "yap“;

puppy.bark;

181 Lines

For grammar, actions, meta-

object and setup code (excluding

comments and blank lines)

Grammar: 40 lines

Actions: 102 lines

Meta-object: 20 lines

And plenty to scope to expand

without significant refactors

NQP

Just like our compiler, the NQP

compiler has...

Grammar class

Actions class

Meta-objects

Glue

Written in NQP; can compile itself

Current Focus

Getting the gradual typing

related features of 6model

accessible to compiler authors

(we need it for Rakudo Perl 6)

Updating documentation

(possible to write compilers

totally in NQP now, and need to

document 6model much more)

The Future

Make the compiler toolkit able to

generate code for extra VMs

Currently, there is some early

work to support 6model and

PAST compilation on both the

CLR and the JVM

Terrifying Demo

of the Future

We can’t run TinyLang on the CLR

yet – that will need a pretty full

port of the NQP language.

However, we can – with a few

minor tweaks – cross-compile to

the .Net CLR. 

My Goals

Make exploring language ideas or

making DSLs quick and easy

We’ll be able to write one

compiler that “just works” on

many VM backends

Create an awesome

Perl 6 compiler 

Thank You

Questions?

