
Meta-programming
in Perl 6

Jonathan Worthington
jnthn | http://6guts.wordpress.com/

jnthn.WHO

From England, now living in Sweden

Rakudo Perl 6 core developer

Designer of 6model, the meta-object
core that Rakudo builds upon

Beer drinker, serial traveller

Meta-programming is...

Meta-programming is...

Meta-programming is...

Programming

Meta-programming is...

ProgrammingProgramming

Programming the
thing you do your
programming with

Meta-programming is...

Hacking
your

language

Meta-programming is...

Meta-circularity

Hacking your
language

using your
language

Meta-circularity

Using existing language
features to...

Introspect them
Tweak them

Build entirely new ones

Meta-objects

Declarations in Perl 6 programs
usually lead to the creation of

meta-objects

A meta-object is simply an object
that defines how an element of our

language works

Meta-objects

class TodoList {
 has @!tasks handles :tasks<elems>;

 method add_todo($task) {
 @!tasks.push($task)
 }

 method take_task() {
 @!tasks ??
 @!tasks.shift !!
 fail("No tasks left!")
 }
}

ClassHOW

Attribute

Method

Method

Introspection

Getting information from meta-objects

Can access information about...

Classes and Roles
Methods
Attributes

Signatures and parameters

Class Describer

Given a class, we want to output a list
of attributes and methods

class TodoList {
 has @!tasks handles :tasks<elems>;
 method add_todo($task) {
 @!tasks.push($task)
 }
 method take_task() {
 @!tasks ??
 @!tasks.shift !!
 fail("No tasks left!")
 }
}

Type TodoList
 Attributes:
 @!tasks (private)
 Methods:
 add_todo
 take_task
 tasks

Class Describer: Outline
module Describe;

sub describe(::T) is export {
 ...
}

Class Describer: Outline
module Describe;

sub describe(::T) is export {
 join "\n", gather {
 ...
 }
}

Class Describer: Type name
module Describe;

sub describe(::T) is export {
 join "\n", gather {
 take "Type {T.^name}";
 ...
 }
}

Class Describer: Attributes
module Describe;

sub describe(::T) is export {
 join "\n", gather {
 take "Type {T.^name}";
 take " Attributes:";
 for T.^attributes(:local) -> $attr {
 take " $attr.name() ({
 $attr.has_accessor ?? 'public' !! 'private'
 })";
 }
 ...
 }
}

Class Describer: Methods
module Describe;

sub describe(::T) is export {
 join "\n", gather {
 take "Type {T.^name}";
 take " Attributes:";
 for T.^attributes(:local) -> $attr {
 take " $attr.name() ({
 $attr.has_accessor ?? 'public' !! 'private'
 })";
 }
 take " Methods:";
 for T.^methods(:local).sort(*.name) -> $meth {
 take " $meth.name()";
 }
 }
}

Type Construction

During compilation, the compiler makes
instances of meta-objects and a series of

method calls on them

Since meta-objects are just normal objects,
we can also create instances of them

This enables us to dynamically create our

own types

Class generation from JSON

We have a JSON file that describes various
events that can happen in our system

[
 {
 "name": "FlightBookedEvent",
 "values": ["flight_code", "passenger_name", "cost"]
 },
 {
 "name": "FlightCancelledEvent",
 "values": ["flight_code", "passenger_name"]
 }
]

Class generation from JSON

We'd like to build classes out of this, so that
we can write code "as normal"...

use Events;

my $e1 = FlightBookedEvent.new(
 flight_code => 'AB123',
 passenger_name => 'jnthn',
 cost => 100);
say $e1.perl;

my $e2 = FlightCancelledEvent.new(
 flight_code => 'AB123',
 passenger_name => 'jnthn');
say $e2.flight_code;
say $e2.passenger_name;

Class generation from JSON

First, use JSON::Tiny to parse the JSON

module Events;
use JSON::Tiny;

my @events = @(from-json(slurp("events.json")));
for @events -> (:$name, :@values) {
 ...
}

Class generation from JSON

For each event, we create a new class...

module Events;
use JSON::Tiny;

my @events = @(from-json(slurp("events.json")));
for @events -> (:$name, :@values) {
 my $type := Metamodel::ClassHOW.new_type(:$name);
 ...
}

Class generation from JSON

...add attributes for each value...

module Events;
use JSON::Tiny;

my @events = @(from-json(slurp("events.json")));
for @events -> (:$name, :@values) {
 my $type := Metamodel::ClassHOW.new_type(:$name);
 for @values -> $attr_name {
 $type.HOW.add_attribute($type, Attribute.new(
 :name('$!' ~ $attr_name), :type(Mu),
 :has_accessor(1), :package($type)
));
 }
 ...
}

Class generation from JSON

...and compose the class.

module Events;
use JSON::Tiny;

my @events = @(from-json(slurp("events.json")));
for @events -> (:$name, :@values) {
 my $type := Metamodel::ClassHOW.new_type(:$name);
 for @values -> $attr_name {
 $type.HOW.add_attribute($type, Attribute.new(
 :name('$!' ~ $attr_name), :type(Mu),
 :has_accessor(1), :package($type)
));
 }
 $type.HOW.compose($type);
 ...
}

Class generation from JSON

Finally, we export the generated classes

module Events;
use JSON::Tiny;
package EXPORT::DEFAULT { }

my @events = @(from-json(slurp("events.json")));
for @events -> (:$name, :@values) {
 my $type := Metamodel::ClassHOW.new_type(:$name);
 for @values -> $attr_name {
 $type.HOW.add_attribute($type, Attribute.new(
 :name('$!' ~ $attr_name), :type(Mu),
 :has_accessor(1), :package($type)
));
 }
 $type.HOW.compose($type);
 EXPORT::DEFAULT.WHO{$name} := $type;
}

Just like the real thing

From the point of view of the user of the
module, the classes are just as real as any

written out in code

Same compile time analysis
(So you'll know about typos at compile time)

Just as efficient

(Because the compiler builds them this way too)

But it's slow!

One concern is that parsing JSON and
building up the meta-objects takes time, so

using the module will be costly

Rakudo supports pre-compilation of
modules, but that still won't help at the

moment, since we do all of the work in the
mainline of the module

BEGIN to the rescue!

We can move all of our generation code
into a BEGIN block...

module Events;
use JSON::Tiny;

package EXPORT::DEFAULT { }

BEGIN {
 my @events = @(from-json(slurp("events.json")));
 for @events -> (:$name, :@values) {
 ...
 }
}

BEGIN to the rescue!

All objects constructed and reachable once
CHECK time is over will be serialized if the

module is pre-compiled

This includes any meta-objects that we
construct at BEGIN time

Thus, we need only do the JSON parse once

when we pre-compile the module

Hacking the language

So far, we've used introspection to look at
standard Perl 6 classes, or built them

We can also tweak the standard definition

of these various meta-objects

This means we can change the way OO
works, or extend it to support new features

Declarators and meta-objects

In Perl 5, we have the package keyword. In
Perl 6, we have various kinds of package,
with corresponding meta-object types...

module

class

role

grammar

ModuleHOW

ClassHOW

ParametricRoleHOW

GrammarHOW

Grammar::Tracer

The Grammar::Tracer module supplies a
customized GrammarHOW that prints a

trace of the grammar as it parses

Inside Grammar::Tracer

First, we declare a class that inherits from
GrammarHOW; we also derive from Mu

We enter it in EXPORTHOW, under a key
corresponding to the package declarator

my class TracedGrammarHOW is Metamodel::GrammarHOW is Mu {
 ...
}

my module EXPORTHOW { }
EXPORTHOW.WHO.<grammar> = TracedGrammarHOW;

Inside Grammar::Tracer

We wish to intercept method calls on the
grammar, so we override find_method

method find_method($obj, $name) {
 ...
}

Inside Grammar::Tracer

We defer to the normal method dispatcher
to find the rule to call

method find_method($obj, $name) {
 my $meth := callsame;
 ...
}

Inside Grammar::Tracer

We skip over any guts-related methods, so
they won't appear in the trace

method find_method($obj, $name) {
 my $meth := callsame;
 substr($name, 0, 1) eq '!'
 || $name eq any(<parse CREATE Bool defined MATCH>) ??
 $meth !!
 -> $c, |$args {
 ...
 }
}

Inside Grammar::Tracer

If we want to trace the method, we return a
closure that will output the rule name...

method find_method($obj, $name) {
 my $meth := callsame;
 substr($name, 0, 1) eq '!'
 || $name eq any(<parse CREATE Bool defined MATCH>) ??
 $meth !!
 -> $c, |$args {
 say ('| ' x $indent) ~ BOLD() ~ $name ~ RESET();
 ...
 }
}

Inside Grammar::Tracer

...then call it and capture the result, while
tracking indentation...

method find_method($obj, $name) {
 my $meth := callsame;
 substr($name, 0, 1) eq '!'
 || $name eq any(<parse CREATE Bool defined MATCH>) ??
 $meth !!
 -> $c, |$args {
 say ('| ' x $indent) ~ BOLD() ~ $name ~ RESET();
 $indent++;
 my $result := $meth($obj, |$args);
 $indent--;
 ...
 }
}

Inside Grammar::Tracer

...and finally print some output about the
result, and return whatever the rule did

method find_method($obj, $name) {
 my $meth := callsame;
 substr($name, 0, 1) eq '!'
 || $name eq any(<parse CREATE Bool defined MATCH>) ??
 $meth !!
 -> $c, |$args {
 say ('| ' x $indent) ~ BOLD() ~ $name ~ RESET();
 $indent++;
 my $result := $meth($obj, |$args);
 $indent--;
 describe($result);
 $result
 }
}

Inside Grammar::Tracer

The (relatively boring) output methods
aside, there's only one thing left to do

For performance, most method dispatches

are done through a cache; we need to
prevent publication of the cache, so that

our find_method override is always called

method publish_method_cache($obj) {
 # Suppress this, so we always hit find_method.
}

Scope of our meta-class

When a use statement is done, it looks for
EXPORTHOW and imports from it

Therefore, any grammars in any modules
we are using will not end up traced - only

the one that we are interested in

Perl 6 is designed to ensure that language
tweaks apply lexically safe!

Really simple AOP

Aspect Oriented Programming helps to
factor out cross-cutting concerns

For example, we may wish to apply logging

to every method in a class

We can build a really, really simple AOP
implementation for Perl 6 in around 30 lines

Aspects

For the purposes of this example, we'll
mandate that all aspects will inherit from

the case class MethodBoundaryAspect

It is just a simple "marker" class, which
we'll use to detect the usage of an aspect

my class MethodBoundaryAspect is export {
}

Applying aspects to a class

The "is" keyword is a trait modifier, and
maps to a (compile time) multiple dispatch

We add an extra implementation that will

call add_aspect when an aspect is used

multi trait_mod:(Mu:U $type, MethodBoundaryAspect:U $aspect)
 is export {
 $aspect === MethodBoundaryAspect ??
 $type.HOW.add_parent($type, $aspect) !!
 $type.HOW.add_aspect($type, $aspect);
}

Custom meta-class

my class ClassWithAspectsHOW is Mu is Metamodel::ClassHOW {
 ...
}

It starts off just the same...

Custom meta-class

my class ClassWithAspectsHOW is Mu is Metamodel::ClassHOW {
 has @!aspects;
 method add_aspect(Mu $obj, MethodBoundaryAspect:U $aspect) {
 @!aspects.push($aspect);
 }
 ...
}

Added aspects are stored in an attribute

Custom meta-class

my class ClassWithAspectsHOW is Metamodel::ClassHOW is Mu {
 has @!aspects;
 method add_aspect(Mu $obj, MethodBoundaryAspect:U $aspect) {
 @!aspects.push($aspect);
 }
 method compose(Mu $obj) {
 for @!aspects -> $a {
 self.apply_aspect($obj, $a);
 }
 callsame;
 }
}

We hook compose to apply the aspects

Custom meta-class

method apply_aspect(Mu $obj, $a) {
 for self.methods($obj, :local) -> $m {
 $m.wrap(-> $obj, |$args {
 $a.?entry($m.name, $obj, $args);
 my $result := callsame;
 $a.?exit($m.name, $obj, $args, $result);
 $result
 });
 }
}

Finally, the apply_aspect method

Example of using AOP

use aspects;

class LoggingAspect is MethodBoundaryAspect {
 method entry($method, $obj, $args) {
 say "Called $method with $args";
 }
 method exit($method, $obj, $args, $result) {
 say "$method returned with $result.perl()";
 }
}

class Example is LoggingAspect {
 method double($x) { $x * 2 }
 method square($x) { $x ** 2 }
}

say Example.double(3);
say Example.square(3);

In conclusion...

Meta-programming opens up the
declarative parts of the language for...

Introspection

Runtime creation
Tweaking and extending

All of the examples demonstrated today

already work on Rakudo Perl 6 \/

Future directions

Make it possible to build meta-class
implementations "from scratch", rather

than subclassing an existing one

Announcements, so meta-objects can tell
each other about runtime changes

More robustness, more optimizations

Thank you!

Questions?

Blog: http://6guts.wordpress.com/
 Twitter: jnthnwrthngtn
Email: jnthn@jnthn.net

