
Exploring Perl 6
Through Its Modules

Jonathan Worthington
@jnthnwrthngtn | 6guts.wordpress.com

Originally from England

Since then, I've lived in…

Spain Slovakia

…and now I'm in Sweden!

I hack on Perl 6

Snippets  Modules

Last time I was at YAPC::Asia, I gave a talk
“Solved in Perl 6”

Lots of small snippets of code showing how to

solve a range of problems in Perl 6

Perl 6 has been growing up. Thanks to the
module ecosystem, we can look at how Perl 6 is

put to use in larger, more practical examples

Multiple Dispatch

Write multiple subroutines or methods that
have the same name, but take a different
number or different types of parameters

multi sub double(Int $x) { $x * 2 }
multi sub double(Str $x) { $x x 2 }

say double(21); # 42
say double('can'); # cancan

JSON::Tiny: to-json

Turns simple Perl data structures into JSON –
powered by multiple dispatch

Real numbers simply stringify
multi to-json(Real:D $d) {
 ~$d
}
Booleans become true or false literals
multi to-json(Bool:D $d) {
 $d ?? 'true' !! 'false';
}

JSON::Tiny: to-json

Turns simple Perl data structures into JSON –
powered by multiple dispatch

Strings need various bits of escaping
multi to-json(Str:D $d) {
 '"' ~ $d.trans(
 ['"', '\\', "\f", "\n", "\r", "\t"] =>
 ['\"', '\\\\', '\f', '\n', '\r', '\t']
).subst(/<-[\c32..\c126]>/,
 { ord(~$_).fmt('\u%04x') }, :g
) ~ '"'
}

JSON::Tiny: to-json

Turns simple Perl data structures into JSON –
powered by multiple dispatch

For anything that can be positionally
indexed, emit a JSON array
multi to-json(Positional:D $d) {
 '[' ~
 $d.map(&to-json).join(', ') ~
 ']';
}

JSON::Tiny: to-json

Turns simple Perl data structures into JSON –
powered by multiple dispatch

Any undefined values become a null
multi to-json(Any:U $) { 'null' }

Error on unrecognized types
multi to-json(Any:D $s) {
 die "Can't serialize an object of type " ~
 $s.^name
}

Grammars

Regexes have always been a key part of Perl

Perl 6 revises regex syntax, and takes them to
the next level by adding support for grammars

The step up from regexes to grammars in small,
but a grammar can stay clean and maintainable

when scaled up to parse something complex

JSON::Tiny: Grammar

A grammar for parsing JSON

Grammars are a kind of package, so we start
with a package-like declaration.
grammar JSON::Tiny::Grammar;

The TOP rule is the default entry rule when
a grammar is used to parse something. We use
rule to get automatic whitespace handling.
rule TOP { ^ [<object> | <array>] $ }

JSON::Tiny: Grammar

A grammar for parsing JSON

Parsing of JSON objects ({ "foo": 42, … })
rule object { '{' ~ '}' <pairlist> }
rule pairlist { <pair> * % \, }
rule pair { <string> ':' <value> }

Parsing of JSON arrays ([1, 2, 3, …])
rule array { '[' ~ ']' <arraylist> }
rule arraylist { <value>* % [\,] }

JSON::Tiny: Grammar

A grammar for parsing JSON

A proto-regex is a bit like an alternation,
but easily and cleanly extensible.
proto token value {*}
token value:sym<true> { <sym> }
token value:sym<false> { <sym> }
token value:sym<null> { <sym> }
token value:sym<object> { <object> }
token value:sym<array> { <array> }
token value:sym<string> { <string> }

JSON::Tiny: Grammar

A grammar for parsing JSON

String parsing – mostly just char classes.
token string {
 \" ~ \" (<str> | \\ <str_escape>)*
}
token str {
 <-["\\\t\n]>+
}
token str_escape {
 <["\\/bfnrt]> | u <xdigit>**4
}

JSON::Tiny: Actions

Action methods are invoked for each grammar
rule, and build a Perl 6 data structure

method value:sym<number>($/) {
 make +$/.Str
}
method value:sym<string>($/) {
 make $<string>.ast
}
method value:sym<true>($/) {
 make Bool::True
}

Get passed the
match object for

the rule in $/.

This is just a few –
there is about
one per rule.

JSON::Tiny: from-json

A simple sub drives the overall JSON to Perl 6
data structure process

Create actions object, then pass it to the
parse method on the grammar.
sub from-json($text) is export {
 my $a = JSON::Tiny::Actions.new();
 my $o = JSON::Tiny::Grammar.parse($text,
 :actions($a));
 return $o.ast;
}

Traits

A way to attach extra information and/or
behavior to declarations (for example, of

classes, subroutines, attributes…)

Modules can provide extra traits too!

sub some-lvalue-sub() is rw {
 …
} The is rw is a trait attached to

the subroutine declaration

NativeCall

Provides an is native trait for routines

This indicates they are really implemented in
native code, which should be loaded and called

The Perl 6 signature is introspected and used to

work out how to pass the arguments

Write native bindings…without writing C!

NativeCall: Win32 API

Here’s an example of calling a Windows API
using the NativeCall library

use NativeCall;

sub MessageBoxA(int32, Str, Str, int32)
 returns int32
 is native('user32')
 { * }

MessageBoxA(0, "We can haz NCI?", “Hi!", 64);

NativeCall: DBIish

A simple database interface for Perl 6 that feels
somewhat like Perl 5's DBI, but with an API that

feels more natural in Perl 6

Supports SQLite, mysql and Pg

Drivers are built using the NativeCall library,
meaning that they are written in pure Perl 6

DBIish: Pg driver example

sub PQexecPrepared(
 OpaquePointer $conn,
 Str $statement_name,
 Int $n_params,
 CArray[Str] $param_values,
 CArray[int] $param_length,
 CArray[int] $param_formats,
 Int $resultFormat)
 returns OpaquePointer
 is native('libpq')
 { ... }

NativeCall
supports

passing and
returning of

arrays

NativeCall

Also supports…

Structures
Callbacks

More bindings are in progress, including an
SDL one that already has enough to support

implementing a Game::BubbleBreaker.

Meta-programming

The Perl 6 object system is based around a
MOP (Meta-Object Protocol)

Can customize the way objects work, for
example, by overriding method dispatch

Can even add entire new features that are not

in core Perl 6, such as aspect orientation

Grammar::Tracer

Grammars are really just like classes

The various regexes, tokens and rules are just
like methods in the class

Each call to a sub-rule is a method dispatch

Idea: use the MOP to hook method dispatch

and trace which rules are being called

Grammar::Tracer

The aim is to output a tree diagram as the
grammar calls down to sub-rules

Grammar::Tracer

Change the meaning of grammar

Inherit from the default grammar package.
my class TracedGrammarHOW is Metamodel::GrammarHOW
{
 …
}

Export our subclass as the default one for the
"grammar" package declarator.
my module EXPORTHOW { }
EXPORTHOW::<grammar> = TracedGrammarHOW;

Grammar::Tracer

Override method dispatch

method find_method($obj, $name) {
 my $meth := callsame;
 $name eq any(<parse MATCH pos from>)
 ?? $meth
 !! -> $c, |args {
 # Output rule name here...
 my $result := $meth($obj, |args);
 # Output result here...
 $result
 }
}

Grammar::Tracer

Display tree (uses Term::ANSIColor)

say ('| ' x $indent) ~ BOLD() ~ $name ~ RESET();

$indent++;
my $result := $meth($obj, |args);
$indent--;

my $match := $result.MATCH;
say ('| ' x $indent) ~ '* ' ~ ($result.MATCH
 ?? colored('MATCH', 'white on_green') ~
 summary($match)
 !! colored('FAIL', 'white on_red'));

Grammar::Tracer

[Live Demo]

Rakudo

The Rakudo Perl 6 compiler is written largely in
NQP (Not Quite Perl 6), a small Perl 6 subset

The CORE setting, which provides many of the

built-ins, is written in Perl 6

This makes it relatively easy to hack on and
extend the compiler

Rakudo Debugger

A small core written in NQP

All the user facing stuff is built in Perl 6! 

Was built without having to extend the core of
the compiler itself

Supports single stepping, breakpoints,

evaluation, changing variables, etc.

Rakudo Debugger

[Live Demo]

Panda

Panda is a simple module installation tool for
Perl 6 modules, written in Perl 6

panda install NativeCall

Where to learn more

To learn more about the modules discussed
today – and many more – check out

modules.perl6.org

The Rakudo debugger and Panda are included
in the Rakudo Star releases; for more see

rakudo.org

Where next?

We’re beyond the age of snippets

These days, it’s already very possible to build
small tools and write modules in Perl 6

In the coming years, in addition to a growing

module ecosystem, I hope to see larger
applications developed in Perl 6

Thank you!

Questions?

Twitter
@jnthnwrthngtn

Blog
 http://6guts.wordpress.com

