
Exceptional
Perl 6

Jonathan Worthington
@jnthnwrthngtn | 6guts.wordpress.com

In previous years...

Submit talk(s) to YAPC::EU

One (or maybe two) are accepted

Go to YAPC::EU

Give talk(s)

This year...

Submit talk(s) to YAPC::EU

Both rejected!

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring
with Roles

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring
with Roles

But...there already
was a roles talk

accepted

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring
with Roles

But...there already
was a roles talk

accepted

Debugging
Perl 6 Programs

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring
with Roles

But...there already
was a roles talk

accepted

Debugging
Perl 6 Programs

Well, debugging is, a
rather boring topic, as

we saw last year 

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Then moritz++ - who did have accepted talks -
couldn't come to YAPC 

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Then moritz++ - who did have accepted talks -
couldn't come to YAPC 

So, he passed this talk on to me 

But roles are
niiiice...

And we all
gotta debug...

So, today, I proudly present...

Exceptional Perl 6:
A study of the design,

throwing and catching of
Perl 6 exceptions, which
may be factored as roles,

and their debugging

> Date.todya
Method 'todya' not found for invocant of
class 'Date'

REPL Exploration

We attempt to call the today method on the
class Date, but make a silly typo

This causes an exception to be thrown; a
human-readable message describes the issue

> try Date.todya; say "Oops: $!"
Oops: No such method 'todya' for invocant
of type 'Date'

REPL Exploration

To further explore exceptions, we use try in
order to capture the exception into $!

Interpolating it in a string once again yields the
same human-readable message

> try Date.todya; say $!.WHAT
X::Method::NotFound()

REPL Exploration

From what we've seen so far, the contents of $!
could be a string. But WHAT is it really?

From this we see that we don't have a string,
but an object of type X::Method::NotFound

> try Date.todya; say $!.perl
X::Method::NotFound.new(
 method => "todya",
 typename => "Date",
 private => Bool::False
)

REPL Exploration

To find out more about the exception object,
we dump it using the perl method

> try Date.todya; say $!.method()
todya

REPL Exploration

The details held in the exception object are
available through method calls

The methods enable programs to easily extract
information about what went wrong

For Us and Them

Exception
Objects

Stringify to a
readable

message for
humans

Are typed
objects with

properties for
programs

my regex insigline {
 ^ \s* [<?> | '#' .* | '{' | '}'] \s* $
}

sub MAIN(*@files) {
 my $total = 0;
 for @files -> $filename {
 $total += lines($filename.IO).grep(
 { $_ !~~ /<&insigline>/ }
).elems;
 }
 say $total;
}

Significant Lines of Code

$ perl6 siglines.p6 A.pm B.pm
156

Significant Lines of Code

When all the files passed to the script exist and
are readable, things work out fine...

When one of them doesn't exist, less fine...

$ perl6 siglines.p6 A.pm B.pm C.pm
Unable to open filehandle from path 'C.pm'

my $total = 0;
for @files -> $filename {
 try {
 $total += lines($filename.IO).grep(
 { $_ !~~ /<&insigline>/ }
).elems;
 }
 note "Can't read $filename" if $!;
}
say $total;

try

We already know we could use try...

try

We already know we could use try...

 Fixes the problem at hand

 Swallows any exception, not just IO ones

 We have to examine $! after the try, which
doesn't feel as clean as we may desire

for @files -> $filename {
 try {
 $total += lines($filename.IO).grep(
 { $_ !~~ /<&insigline>/ }
).elems;
 CATCH {
 when X::IO {
 note "Couldn't read $filename";
 }
 }
 }
}

CATCH

CATCH phasers trigger when an
exception is thrown, and place it in

$_ to allow smartmatching against it

my $total = 0;
for @files -> $filename {
 $total += lines($filename.IO).grep(
 { $_ !~~ /<&insigline>/ }
).elems;
 CATCH {
 when X::IO {
 note "Couldn't read $filename";
 }
 }
}
say $total;

CATCH

Any block can have a CATCH
phaser, so we can place it directly in

the loop body - much cleaner!

my $total = 0;
for @files -> $filename {
 $total += lines($filename.IO).grep(
 { $_ !~~ /<&insigline>/ }
).elems;
 CATCH {
 when X::IO {
 note "Couldn't read $filename";
 }
 }
}
say $total;

CATCH

As CATCH goes inside of the scope,
we can see the scope's lexicals!

CATCH and Rethrows

If a CATCH block does not successfully smart-
match an exception, it is re-thrown for the next

handler in the dynamic scope to consider

CATCH {
 when X::IO {
 note "Couldn't read $filename";
 }
}

Anything not an X::IO is rethrown

default

To catch any type of exception, use the default
block inside of a CATCH

CATCH {
 when X::IO {
 note "Couldn't read $filename";
 }
 default {
 note "Failed to process $filename";
 }
}

Take a look, pass it on

A CATCH block that doesn't smart-match the
exception may still take action based on it

However, since it didn't successfully smart-
match, the exception will be re-thrown

CATCH {
 $logger.log_file_error($filename, $_);
}

?
We have typed exceptions for errors from

built-ins, the compiler, etc.

But where and how are they defined?

A peek inside Rakudo

Looking inside Rakudo's CORE.setting, we find
that exception types are simply class definitions

my class X::Method::NotFound is Exception {
 has $.method;
 has $.typename;
 has Bool $.private = False;
 method message() {
 # ...
 }
}

Exceptional Perl 6:
A study of the design,

throwing and catching of
Perl 6 exceptions, which
may be factored as roles,

and their debugging

A factoring challenge

All syntax errors should match X::Syntax

All Pod-related errors should match X::Pod

Clearly not all syntax errors are Pod errors, but
not all Pod errors are going to be syntax errors

Roles are a neat solution to this kind of issue

Using roles

Roles provide a way to categorize exceptions
and factor out shared properties

my role X::Comp is Exception {
 has $.filename;
 has $.line;
 has $.column;
 has @.modules;
 #...
}
my role X::Syntax does X::Comp { }
my role X::Pod { }

All compilation errors
have a file, line, column

and module trace

Using roles

Roles provide a way to categorize exceptions
and factor out shared properties

my role X::Comp is Exception {
 has $.filename;
 has $.line;
 has $.column;
 has @.modules;
 #...
}
my role X::Syntax does X::Comp { }
my role X::Pod { }

Factor out the
default parent
Exception also

Role composition

Something that is a Pod error and a syntax error
may compose both of the roles

my class X::Syntax::Pod::BeginWithoutIdentifier
 does X::Syntax
 does X::Pod
{
 method message() {
 '=begin must be followed by an identifier;'
 ~ ' (did you mean "=begin pod"?)'
 }
}

Why role composition?

When a role is composed into a class, its
attributes and methods are copied to the class

If two roles supply the same method, it is

detected as a conflict at compile time

The class must explicitly resolve the conflict, by
providing a method of that name that does so

Exceptional Perl 6:
A study of the design,

throwing and catching of
Perl 6 exceptions, which
may be factored as roles,

and their debugging

Poll::Simple

A very simple module for delivering polls

A list of options are passed to new

The vote method is used to vote on an option

There result_graph method renders a the
current results as a ASCII-art bar graph

Poll::Simple
class Poll::Simple {
 has @.options;
 has %!scores;

 submethod BUILD(:@!options) {
 %!scores{$_} = 0 for @!options;
 }

 method vote($option) {
 if $option eq any(@!options) {
 %!scores{$option}++;
 }
 else {
 die "Invalid poll option '$option'";
 }
 }
}

use Text::BarGraph;

class Poll::Simple {
 # ...

 method result_graph() {
 render_graph(%!scores);
 }
}

Poll::Simple

The rendering of the bar graph will he handled
by another module, Text::BarGraph

Text::BarGraph
module Text::BarGraph;

sub render_graph(%data, :$label_char_limit = 25,
 :$overall_width = 75) is export {
 my $label_chars = [min] %data.keys.max(*.chars),
 $label_char_limit;
 my $bar_width = $overall_width - ($label_chars + 2);
 my $max_value = %data.values.max;

 join "\n", %data.kv.map: -> $label, $value {
 my $entry = $label.chars > $label_chars
 ?? $label.substr(0, $label_chars)
 !! $label;
 $entry ~= ' ' x 1 + $label_chars - $label.chars;
 $entry ~= '=' x $bar_width * $value / $max_value;
 }
}

Let's give this a try...
use Poll::Simple;

Create a poll.
my $best_beer = Poll::Simple.new(
 options => < Stout Lager Porter Ale Pilsner >
);

Show the graph (all zero votes so far).
say $best_beer.result_graph();

Let's give this a try...
use Poll::Simple;

Create a poll.
my $best_beer = Poll::Simple.new(
 options => < Stout Lager Porter Ale Pilsner >
);

Show the graph (all zero votes so far).
say $best_beer.result_graph();

$ perl6 -I. z.p6
Divide by zero
 ...

OH NOES!!!

Use the
debugger!

There is no
Perl 6 debugger!

OH YES
THERE IS!

OH NO
THERE ISN'T!

do live_demo() or fail;

method vote($option) {
 if $option eq any(@!options) {
 %!scores{$option}++;
 }
 else {
 die "Invalid poll option '$option'";
 }
}

Typed exceptions

At the moment, voting for an invalid option
dies with a simple string

Let's make it a typed exception!

class X::Poll::Simple::InvalidOption is Exception {
 has $.invalid;
 has @.valid;

 method message() {
 "'$.invalid()' is not a valid answer; vote any of:\n" ~
 @.valid.join(", ")
 }
}

Adding Typed Exceptions

Our typed exception carries information on
what is wrong and what to try, and can use it to

produce a human-readable message also

method vote($option) {
 if $option eq any(@!options) {
 %!scores{$option}++;
 }
 else {
 die X::Poll::Simple::InvalidOption.new(
 invalid => $option,
 valid => @!options
);
 }
}

Using Typed Exceptions

The typed exception can be used with die in
place of a string message

method vote($option) {
 if $option eq any(@!options) {
 %!scores{$option}++;
 }
 else {
 X::Poll::Simple::InvalidOption.new(
 invalid => $option,
 valid => @!options
).throw;
 }
}

Using Typed Exceptions

Alternatively, create the exception object and
then call the throw method on it

What's next?

Exceptions from the compiler and CORE setting
are now typed; still some work in those issued

by the meta-model and a couple of other cases

Getting all of the exceptions documented in
p6doc (for more on p6doc, see pmichaud's talk)

More work on the Rakudo debugger!

Thank you!
Questions?

E: jnthn@jnthn.net
T: @jnthnwrthngtn

W: 6guts.wordpress.com

