T S——— -

—

@;nthnwrthﬁg}tn | 6gutfwordpr;s§‘ com

In previous years...

Submit talk(s) to YAPC::EU
One (or maybe two) are accepted
Go to YAPC::EU

Give talk(s)

This year...

Submit talk(s) to YAPC::EU

Both rejected!

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring
with Roles

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring
with Roles

But...there already
was a roles talk
accepted

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring Debugging
with Roles Perl 6 Programs

But...there already
was a roles talk
accepted

This year...

Submit talk(s) to YAPC::EU

Both rejected!

Factoring Debugging
with Roles Perl 6 Programs
But...there already Well, debugging is, a
was a roles talk rather boring topic, as

accepted we saw last year ©

This year...

Submit talk(s) to YAPC::EU
Both rejected!

Then moritz++ - who did have accepted talks -
couldn't come to YAPC ®

This year...

Submit talk(s) to YAPC::EU
Both rejected!

Then moritz++ - who did have accepted talks -
couldn't come to YAPC ®

So, he passed this talk on to me ©

But roles are
niiiice...

And we all
gotta debug...

So, today, | proudly present...

Exceptional Perl 6:

A study of the design,
throwing and catching of
Perl 6 exceptions, which
may be factored as roles,

and their debugging

REPL Exploration

We attempt to call the today method on the
class Date, but make asilly typo

> Date.todya

Method 'todya’' not found for invocant of
class 'Date’

This causes an exception to be thrown; a
human-readable message describes the issue

REPL Exploration

To further explore exceptions, we use try in
order to capture the exception into $!

> try Date.todya; say "Oops: $!"

Oops: No such method 'todya' for invocant
of type 'Date’

Interpolating it in a string once again yields the
same human-readable message

REPL Exploration

From what we've seen so far, the contents of $!
could be a string. But WHAT is it really?

> try Date.todya; say $!.WHAT

X: :Method: :NotFound()

From this we see that we don't have a string,
but an object of type X::Method::NotFound

REPL Exploration

To find out more about the exception object,
we dump it using the perl method

> try Date.todya; say $!.perl
X: :Method: :NotFound.new(
method => "todya",

typename => "Date",
private => Bool::False

REPL Exploration

The details held in the exception object are
available through method calls

> try Date.todya; say $!.method()

todya

The methods enable programs to easily extract
information about what went wrong

For Us and Them

Exception
Objects
Stringify to a Are typed
readable objects with
message for properties for
humans programs

Significant Lines of Code

my regex insigline {
ANSsE [<> | t#t x| "}] \s* ¢
}

sub MAIN(*@files) {
my $total = 0;
for @files -> $filename {
$total += lines($filename.IO).grep(
{ $_ !~~ /<&Iinsigline>/ }
).elems;

}
say $total;

Significant Lines of Code

When all the files passed to the script exist and
are readable, things work out fine...

$ perl6 siglines.p6 A.pm B.pm

156

When one of them doesn't exist, less fine...

$ perl6 siglines.p6 A.pm B.pm C.pm

Unable to open filehandle from path 'C.pm'

try

We already know we could use try...

my $total = 0;
for @files -> $filename {
try {
$total += lines($filename.IO).grep(
{ $!~~ /<&insigline>/ }
).elems;

}

note "Can't read $filename" if $!;

}
say $total;

try
We already know we could use try...
© Fixes the problem at hand

® Swallows any exception, not just IO ones

® We have to examine $! after the try, which
doesn't feel as clean as we may desire

for @files -> $filename {
try {
$total += lines($filename.IO).grep(
{ $!~~ /<&insigline>/ }
).elems;
CATCH {
when X::I0 {
note "Couldn't read $filename"”;

}

CATCH phasers trigger when an
exception is thrown, and place it in
$_to allow smartmatching against it

my $total = 0;
for @files -> $filename {
$total += lines($filename.IO).grep(
{ $!~~ /<&insigline>/ }
).elems;

CATCH {
when X::I0 {
note "Couldn't read $filename";

}
} Any block can have a CATCH

phaser, so we can place it directly in
the loop body - much cleaner!

}
say $total;

my $total = 0;
for @files -> $filename {
$total += lines($filename.IO).grep(
{ $!~~ /<&insigline>/ }
).elems;

CATCH {
when X::I0 {
note "Couldn't read $filename"”;

}

}
zay $total; As CATCH goes inside of the scope,
we can see the scope's lexicals!

CATCH and Rethrows

If a CATCH block does not successfully smart-
match an exception, it is re-thrown for the next
handler in the dynamic scope to consider

CATCH {
when X::I0 {
note "Couldn't read $filename";

}

Anything not an X::|O is rethrown

default

To catch any type of exception, use the default
block inside of a CATCH

CATCH {
when X::I0 {
note "Couldn't read $filename"”;

}

default {
note "Failed to process $filename";

}

Take a look, pass it on

A CATCH block that doesn't smart-match the
exception may still take action based on it

CATCH {

$logger.log_file_error($filename, $_);

}

However, since it didn't successfully smart-
match, the exception will be re-thrown

/

We have typed exceptions for errors from
built-ins, the compiler, etc.

But where and how are they defined?

A peekinside Rakudo

Looking inside Rakudo's CORE.setting, we find
that exception types are simply class definitions

my class X::Method::NotFound is Exception {
has $.method;

has $.typename;
has Bool $.private = False;

method message() {
#t ...

}

A study of the ,
and of
Perl 6 . which
may be factored as roles,
and their

A factoring challenge

All syntax errors should match X::Syntax
All Pod-related errors should match X::Pod

Clearly not all syntax errors are Pod errors, but
not all Pod errors are going to be syntax errors

Roles are a neat solution to this kind of issue

Using roles

Roles provide a way to categorize exceptions
and factor out shared properties

X::Comp is Exception {
$.filename;

$.line;

$.column;

All compilation errors
have afile, line, column

@.modules; and module trace

X::Syntax does X::Comp { }
X: :Pod { }

Using roles

Roles provide a way to categorize exceptions
and factor out shared properties

X::Comp is Exception { Factor out the
$.filename;

$.line;
$.column;
@.modules;

default parent
Exception also

X::Syntax does X::Comp { }
X: :Pod { }

Role composition

Something that is a Pod error and a syntax error
may compose both of the roles

my class X::Syntax::Pod: :BeginWithoutIdentifier
does X::Syntax
does X::Pod

method message() {
'=begin must be followed by an identifier;'
~ ' (did you mean "=begin pod"?)'

Why role composition?

When arole is composed into a class, its
attributes and methods are copied to the class

If two roles supply the same method, it is
detected as a conflict at compile time

The class must explicitly resolve the conflict, by
providing a method of that name that does so

Exceptional Perl 6:

A study of the design,
throwing and catching of
Perl 6 exceptions, which
may be factored as roles,

and their debugging

Poll::Simple
A very simple module for delivering polls
A list of options are passed to new

The vote method is used to vote on an option

There result_graph method renders a the
current results as a ASCll-art bar graph

Poll::Simple

class Poll::Simple {
has @.options;
has %!scores;

submethod BUILD(:@!options) {
%!scores{$_} = 0 for @!options;

}

method vote($option) {
if $option eq any(@!options) {
%!scores{$option}++;
}
else {
die "Invalid poll option '$option'";

Poll::Simple

The rendering of the bar graph will he handled
by another module, Text::BarGraph

use Text: :BarGraph;

class Poll::Simple {
...

method result _graph() {
render_graph(%!scores);

}

Text::BarGraph

module Text: :BarGraph;

sub render_graph(%data, :$label char_limit = 25,
:$overall width = 75) is export {
my $label chars = [min] %data.keys.max(*.chars),
$label char_limit;

my $bar_width $overall width - ($label chars + 2);
my $max_value %data.values.max;

join "\n", %data.kv.map: -> $label, $value {
my $entry = $label.chars > $label_chars
?? $label.substr(0, $label chars)
1l $label;
$entry ~= ' ' x 1 + $label chars - $label.chars;
$entry ~= x $bar_width * $value / $max_value;

Let's give this a try...

use Poll::Simple;

Create a poll.
my $best _beer = Poll::Simple.new(

options => < Stout Lager Porter Ale Pilsner >

);

Show the graph (all zero votes so far).
say $best beer.result _graph();

Let's give this a try...

use Poll::Simple;

Create a poll.
my $best _beer = Poll::Simple.new(
options => < Stout Lager Porter Ale Pilsner >

);

Show the graph (all zero votes so far).
say $best beer.result _graph();

$ perlée -I. z.p6
Divide by zero

OH NOESI!!

Use the
debugger!

There is no
Perl 6 debugger!

OH YES
THERE IS!

OH NO
THERE ISN'T!

do live_demo() or fail;

Typed exceptions

At the moment, voting for an invalid option
dies with a simple string

method vote($option) {
if $option eq any(@!options) {
%!scores{$option}++;

}

else {
die "Invalid poll option '$option'";

}

Let's make it a typed exception!

Adding Typed Exceptions

Our typed exception carries information on
what is wrong and what to try, and can use it to
produce a human-readable message also

class X::Poll::Simple::InvalidOption is Exception {

has $.invalid;
has @.valid;

method message() {
"'$.invalid()' is not a valid answer; vote any of:\n" ~
@.valid.join(", ")

Using Typed Exceptions

The typed exception can be used with die in
place of a string message

method vote($option) {
if $option eq any(@!options) {
%!scores{$option}++;

}

else {

die X::Poll::Simple::InvalidOption.new(
invalid => $option,
valid => @!options

Using Typed Exceptions

Alternatively, create the exception object and
then call the throw method on it

method vote($option) {
if $option eq any(@!options) {
%!scores{$option}++;

}

else {
X::Poll::Simple::InvalidOption.new(
invalid => $option,
valid => @!options
) .throw;

What's next?

Exceptions from the compiler and CORE setting
are now typed; still some work in those issued
by the meta-model and a couple of other cases

Getting all of the exceptions documented in
p6doc (for more on p6doc, see pmichaud's talk)

More work on the Rakudo debugger!

Thank you!

Questions?

E: jnthn@jnthn.net
T: @jnthnwrthngtn
W: 6guts.wordpress.com

