
Rakudo Perl 6:
to the JVM and beyond!

Jonathan Worthington

Rakudo

A Perl 6 implementation

Compiler + built-ins

64 monthly releases to date

10-15 code contributors per release
(but we draw on many other contributions

too: bug reports, test suite work, etc.)

Program
Text

Parse

Source Tree

Target Tree

Code Gen
Compiled

Output

What a compiler does

Program
Text

Parse

Source Tree

Target Tree

Code Gen
Compiled

Output

What a compiler does

Frontend

Backend

Program
Text

Parse

Source Tree

The frontend

Frontend

All about a specific language

Syntax, runtime semantics, declarations...

Target Tree

Code Gen
Compiled

Output

The backend

Backend

All about the target runtime

Map HLL concepts to runtime primitives

Rakudo compiler architecture

Loosely coupled sequence of stages that...

Take some well-defined data structure as input
and

Produce some well-defined data structure as output

Each stage may be relatively complex. However, it is
also completely self-contained.

An FP design, factored OO-ly.

QAST ("Q" Abstract Syntax Tree)

The data structure used to communicate between
frontend and backend

A tree with around 15 node types

QAST::Op
op => 'add_i'

QAST::Var
name => '$x'

QAST::IVal
value => 1

Building a Perl 6 compiler

The stuff you learn in compiler class on a typical
computer science course only takes you so far

"Necessary, but not sufficient"

The overall assumption is source in, and – provided
it is free of errors – translation to the target runtime

So what makes Perl 6 interesting?

Compile time at runtime

You might have to compile stuff while running

This one is fairly easy. You just make sure that the
compiler is available at runtime.

eval 'say "Here we go compiling..."';

my $pat = prompt 'Pattern: ';
my $txt = prompt 'Text: ';
say $txt ~~ /<$pat>/;

Runtime at compile time

You might have to run stuff while compiling

Who knows what will be called!

It's not just that we have to run stuff while compiling.
It's that we have to run parts of the program we're in

the middle of compiling.

CHECK say now - BEGIN now;

sub fac($n) { [*] 1..$n }
constant fac20 = fac(20);

Compiler must be re-entrant

After all, there's nothing to stop a bit of runtime at
compile time doing a bit of compile time too...

But really, that's what loading and compiling a
module is.

In reality, just means not having global state. Which

is good design anyway.

BEGIN eval 'say q[oh, my]'

Mutable grammar

New operators and terms can be introduced during
the parser, augmenting the parser

But only lexically!

sub postfix:<!>($n) { [*] 1..$n }
say 20!

{
 sub postfix:<!>($n) { [*] 1..$n }
}
say 20!; # Must be an error

Meta-programming

The meaning of the package declarators can be
changed – also just for a lexical scope

In fact, most declarations boil down to creating
objects rather than generating code

use Grammar::Tracer;

grammar JSON::Tiny {
 # Rules in there should be traced
}

Serialization

Creating objects is fine, but what if we need to put
the output in some kind of bytecode file?

The objects must be serialized! And they may

reference objects from other compilation units.

BEGIN {
 my $c = Metamodel::ClassHOW.new_type(
 :name('Foo'));
 EXPORT::DEFAULT::<Foo> = $c;
}

Separate compilation, but...

So we serialize stuff per compilation unit. But wait,
what about…

Need to detect such changes, and then re-serialize
new versions of meta-objects from other

compilation units!

augment class Int {
 method answer() { 42 }
}

Every operator is a multi-dispatch

Things like…

…compile down to…

…which is a multiple dispatch on type.

How can this ever be fast? Needs inlining
compile time analysis of multiple dispatches.

$a + $b

&infix:<+>($a, $b)

Gradual typing, pluggable types

The Perl 6 type system is opt-in

When you write types, the compiler should be able
to make use of the information to do additional

checks and generate better code

However, meta-programming means that the type
checking method is user-overridable!

my $name;
my Int $age;

Rakudo: the early days

Built a relatively conventional compiler

The grammar engine was decidedly innovative,
using a Perl 6 grammar to do the parsing

Turned class declarations into calls on meta-objects,
which we run during startup costly, and not really

the right semantics either

In fact, all BEGIN time was…icky.

Result: impractical foundation

We made a lot of things work. On the surface, it
looked promising. But inside, it felt like this:

The ignorance curve

Ignorance

Time

The ignorance curve

Ignorance

Time

Aha!

The ignorance curve

Ignorance

Time

Aha!

The "nom" branch starts

Realizations

The split of grammar (syntax) and actions
(semantics) left the handling of declarations

scattered all over the compiler
 need a third thing (we called it World)

Creating objects during the parse/compilation and
referring to them at runtime happens everywhere

 must be cheap and easy

Must create meta-objects as we parse, and have
robust ways to handle BEGIN time

Around the same time...

Ruby and Python are on multiple VMs. Why can't
Perl do that also?

Perl 5 runs on lots of platforms in the CPU/OS sense.
But these days, a lot of the interesting platforms are

not physical machines. They're virtual machines.

Some organizations want to deploy everything on a
particular virtual platform. A language doesn't run

on that platform? Can't use it.

Additional realizations

Building the things needed to support a Perl 6
implementation is rather difficult

Thus, Rakudo should look at how this investment

could be re-used when targeting new VMs

Program
Source

Frontend

QAST Tree
Parrot backend

JVM backend

JavaScript backend

So, the grand plan

Extensive re-working of Rakudo and the compiler
toolchain to better handle declarations, meta-

objects, and have a much better foundation

Don't do all of the serialization and multi-VM stuff
right away. Just make it possible in the future.

Took longer than imagined, for various reasons. In

hindsight, it was still the right call. At the time,
plenty of whining. Taking hard decisions is hard.

So, what do we write it in?

From very early on, various components of Perl 6
were written in NQP, a Perl 6 subset

Earlier work on Rakudo had extensive portions of the
built-ins, OO stuff, etc. written in PIR, a thin layer on

Parrot's assembly language.

Problem: to work on Rakudo required learning PIR.
Which, frankly, was horrible. Even Parrot folks tend

usually agree PIR is horrible.

Write all the things in NQP / Perl 6

Thus, we gradually moved to writing almost
everything in either NQP, or Perl 6 itself

More accessible to more contributors

Even NQP came to be written entirely in NQP!

This would be important for porting…

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

NQP Perl 6 VM Specific Code VM

Overall architecture

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Overall architecture

PAST 6model nqp::ops
VM

Abstraction

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Overall architecture

PAST 6model nqp::ops
VM

Abstraction

Parrot

VM
Specific

POST

Other
Backends

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Overall architecture

PAST 6model nqp::ops
VM

Abstraction

Parrot

VM
Specific

POST

Other
Backends

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

JVM

JAST

Overall architecture: JVM plan

Step 1: JAST JVM bytecode

JVM Abstract Syntax Tree: a bunch of classes in NQP
that can be used to describe Java bytecode

Steadily built up it up, test by test

jast_test(
 -> $c {
 my $m := JAST::Method.new(:name('one'), :returns('I'));
 $m.append(JAST::Instruction.new(:op('iconst_1')));
 $m.append(JAST::Instruction.new(:op('ireturn')));
 $c.add_method($m);
 },
 'System.out.println(new Integer(JASTTest.one()).toString());',
 "1\n",
 "Simple method returning a constant");

Bytecode generation? Boring!

Really, really did not want to have to do the actual
class file writing. Thankfully, could re-use an existing

library here (first BCEL, later ASM).

Step 2: basic QAST JAST

Now there was a way to produce Java bytecode from
an NQP program, it was possible start writing a

QAST to JAST translator

This also involved building out runtime support –
including a JVM implementation of 6model

Also approached in a test driven way

Test suite useful for future porting efforts

Step 2: basic QAST JAST

qast_test(
 -> {
 my $block := QAST::Block.new(
 QAST::Op.new(
 :op('say'),
 QAST::SVal.new(:value('QAST compiled to JVM!'))
));
 QAST::CompUnit.new(
 $block,
 :main(QAST::Op.new(
 :op('call'),
 QAST::BVal.new(:value($block))
)))
 },
 "QAST compiled to JVM!\n",
 "Basic block call and say of a string literal");

Step 3: NQP cross-compiler

Took existing grammar/actions/world from NQP on
Parrot, and plugged in the JVM backend

Took about 20 lines of code.

Design win!

NQP Frontend

QAST Tree

JVM backend

Step 4: cross-compile NQP

Use the NQP cross-compiler to cross-compile NQP

Hit various missing pieces, and some things that
needed further abstraction

End result: a bunch of class files representing a

standalone NQP on the JVM!

NQP Cross-Compiler
running on Parrot

NQP
Sources

NQP
Sources

NQP
Sources

NQP
Sources

NQP
Sources

NQP
on JVM

Step 5: close the bootstrap loop

Could NQP running on
the JVM also build a

fresh NQP for the JVM
from source?

NQP on JVM

Answer: yes, once some missing pieces were
completed (such as serialization)

\/

Merged into NQP master in late April

Included in the May release of NQP

Rakudo: first port the compiler

Rakudo is broken into the compiler itself and various
built-ins, including meta-objects. The compiler is

used to build some of those built-ins.

Actions

World

Grammar

MOP +
Bootstrap

CORE Setting
(built-ins)

Compiler

Builds

Loads

Compiler, MOP and bootstrap

While the Perl 6 grammar and actions are much
larger and more complex than their NQP

equivalents, they don't really use anything new

Similar story for the various meta-objects

The bootstrap was a different story. It contains a
huge BEGIN block that does a lot of setup work,
piecing together the core Perl 6 types. This gets

done at compile time, and is then serialized.

The setting: bit by bit, or all in one?

The CORE setting contains the built-in types and
functions. It forms the outer scope of your program.

13,250
lines of Perl 6

That's a tough first test.

Getting from line 0 to line 100 was O(week)

From 100 to 1000 was O(week)

From 1000 to 2000 was O(day)

From 2000 to 13000 was O(day)

Screw it, let's do it all anyway...

What makes it hard?

Compiling the setting isn't just compiling

On line 137:

Yup, compiling the Perl 6 setting means running bits
of Perl 6 code

Also traits, constants…

BEGIN &trait_mod:<is>.set_onlystar();

"Hello, JVM"

Around a week or two ago…

Remember, this is running the compiler itself and
loading just about all the core setting on the JVM
 just "hello world", but not cheating at all

Of course, still plenty of work to go

$ perl6 -e "say 'Hello, JVM'"
Hello, JVM

So, what next?

Pass the sanity tests
(13 test files)

Pass the specification tests
(740 test files)

Get the ecosystem working with it
(Modules, module installer, etc.)

Performance

Disclaimer: so far, not yet optimized.

"Make it work, then make it fast."

Performance

A few micro-benchmarks that may or may not be
indicative; usual caveats apply

Levenstein Benchmark on NQP

Runs around 15x faster on JVM than on Parrot

Parsing Rakudo CORE setting
Around 3x faster on JVM than on Parrot

while $i < 1000000 { $i++ } on Rakudo
Around 5x faster on JVM than Parrot

When?

The June compiler release of Rakudo will be the first
with some level of JVM support

Aim for spectest equivalence with Rakudo on Parrot

in time for the August release

Aim for first Rakudo Star based on JVM sometime in
September

JVM as a Perl 6 backend: the good

The JVM is very mature and well optimized

Serious interest from JVM developers to support
dynamic languages, e.g. invokedynamic

Ability to handle static and dynamically typed

languages well promising for gradually typed

Solid, battle-hardened threads, so we can focus on
nailing down this under-explored area of Perl 6

JVM backend weaknesses

Startup time is currently awful.

JVM backend weaknesses

Startup time is currently awful.

I mean, really, really awful.

JVM backend weaknesses

Startup time is currently awful. Perfect storm of JVM
startup being relatively slow, and us doing too much

work at startup, which is done before JIT kicks in.
 can be improved, with effort

While the commitment to invokedynamic seems

serious, in reality it's new. I've run into bugs.
will very likely improve, with time

And, of course, nowhere near as capable yet

 "just" needs more work

There's more than one way to run it

Running on multiple backends is very much in the
TMTOWTDI spirit of Perl

Contrast with how other languages are doing it:

Rakudo is targetting multiple backends with a single
implementation, rather than one per VM

Backend explosion?

We only have so many resources. Expectation: align
resources with popularity.

Vision

Rakudo Perl 6 runs well on a number of platforms,
and is fast and reliable enough for most tasks

Modules, debugger, etc. work reliably on the

different backends

Most development effort goes into the things that
are shared, rather than the VM specific stuff

Perl 6 users build awesome stuff, and enjoy doing so

Thank you!

Questions?

Blog: 6guts.wordpress.com
Twitter: @jnthnwrthngtn
Email: jnthn@jnthn.net

