
Concurrency, Parallelism and Asynchrony:
Perl 6 plotting and

prototyping

Jonathan Worthington

Why should we care?

In the last decade, hardware has become increasingly
parallel, as getting more cycles out of a single core has

started to run in to physical limitations

 Growing need to do parallel programming

At the same time, distributed systems have become the
norm, and users have grown to expect ever-more

responsive applications; see the recently published
Reactive Manifesto for discussion on this

 Growing need for asynchrony

Why now?

Perl 6 has, from the start, aimed to provide better
support for parallel programming, a Perl 5 weak area; in

reality, little visible progress up to now

By contrast, Perl 5 already has good answers on
asynchrony; again, little to show from Perl 6 land

Within the last few months, Rakudo - the most complete
Perl 6 implementation - has been able to run on the JVM

We now have all the parallel, concurrent and

asynchronous primitives we need to move forward

Why me?

There's something that not all in the Perl world know

Why me?

There's something that not all in the Perl world know

I'm also a C# developer/teacher at my $dayjob

Why me?

There's something that not all in the Perl world know

I'm also a C# developer/teacher at my $dayjob

Coping with threads is a daily reality for many C#
developers, though not all cope especially well

Parallel and concurrent programming has shown up in

many projects and at many clients I get to observe lots
of interesting ways to screw it up!

Also been teaching the new asynchronous C# features

Parallelism

Break a problem into pieces we can do at the same time

This enables us to exploit multi-core CPUs

We can know we're free of parallelization bugs if the
result is always the same as if we'd computed it serially

Task 1

Task 2

Task 3

Time

Asynchrony

Synchronous is "the normal thing": we call something, it
does its work, then returns a result

With asynchronous : we call something, it sets the work

in motion, and returns (typically, an object that
represents the ongoing work)

$data = load($f);

do next thing

sync
load

$data = load($f);

do next thing
do another
…
…
…

async
load

Concurrency

About coping with events arising whenever then please,
and trying to do "the right thing"

Happens inside of parallelism (different pieces of the
work will complete at different times), but that's the easy

case, as there's a correctness criteria

In an inherently concurrent domain with many
autonomous actors, correctness less obvious

Co-ordinator

Computation completed

File download completed

User request

TMTOWTDI - but they compose

In Perl, we're used to mixing different paradigms to solve
problems, combining them effortlessly

my @hammers = @tools.grep({ .name ~~ /hammer/ });

TMTOWTDI - but they compose

In Perl, we're used to mixing different paradigms to solve
problems, combining them effortlessly

my @hammers = @tools.grep({ .name ~~ /hammer/ });

Object
Oriented

Programming

Higher
Oriented

Programming

Declarative
Programming

TMTOWTDI - but they compose

In Perl, we're used to mixing different paradigms to solve
problems, combining them effortlessly

Likewise, we may need to employ parallelism, asynchrony
and concurrency in our system

They solve different problems, but should compose

my @hammers = @tools.grep({ .name ~~ /hammer/ });

Object
Oriented

Programming

Higher
Oriented

Programming

Declarative
Programming

Threads and locks

These are the assembly language of parallel and
concurrent programming

 Used directly, they rarely compose well

A component spawning two worker threads may be OK in

isolation, but what if your application needs to use 20
components that do this?

Two pieces of code that use locks can each work reliably

in isolation, but may have a deadlock risk if used together

Threads: the Perl 6 take

"Make the easy things easy and the hard things possible"

Threads and locks are a hard thing

We won't stop you writing...

...and getting yourself an OS-level thread

But it's a last resort, not a first resort

my $t1 = Thread.start({ do_hard_computation() });
...
$t1.join();

A more Promise-ing approach

An async code block schedules a piece of work to be
done asynchronously (on some other thread)

It produces a Promise object, which represents the
ongoing piece of work

We don't spawn a thread per async block! The spawning

of threads is managed by a scheduler, meaning it can
spread work over a sensible number of them.

my $p10000 = async {
 (1..Inf).grep(*.is-prime)[9999]
}

Promise basics

The current status of a Promise (Planned, Running, Kept,
Broken) can be obtained with the status method

The result method obtains the result produced by the
async block, unless it died, in which case the exception

will be rethrown so it can be handled

Calling result on a Promise that is not yet Kept or
Broken will block until the Promise's execution is done

say $p10000.status;

say $p10000.result;

The await function

The await function takes one or more Promise objects,
blocks until they all have results, and returns a list of

their results, throwing any exceptions

Naively, calls result, but allowed to be smarter (yield)

my $p2000 = async {
 (1..Inf).grep(*.is-prime)[1999]
}
my $p4000 = async {
 (1..Inf).grep(*.is-prime)[3999]
}

.say for await $p2000, $p4000;

A more useful example

Here's a program that adds up the number of lines across
all the files in a given directory

Could instead have a Promise to process each file, then
await them and add up the results

say [+] dir('docs/announce').map({
 .IO.lines.elems
});

say [+] await dir('docs/announce').map({
 async { .IO.lines.elems }
});

0

Promise combinators

One of the most powerful things we can do with
Promises is write combinators that act on one or more

of them, producing some kind of aggregate Promise

The anyof and allof combinators produce a Promise
that is kept when one or all of a set of promises are kept

my @promises = dir('docs/announce').map({
 async { .IO.lines.elems }
});

my $lines_counted = Promise.allof(@promises);

Promise.sleep

The Promise class also has a sleep method, which
produces a promise that will be kept after a delay

Unlike the normal sleep function, Promise.sleep will

not block a thread. You can have hundreds of them.

Used with anyof, we have a timeout mechanism

await Promise.anyof($p2000, Promise.sleep(5));
say $p2000.status == Kept
 ?? $p2000.result
 !! 'Timed out';

After the Promise, then...

The then method on a Promise registers a piece of code
to run when the promise is kept or broken

Most significantly, this method also returns a Promise

that represents the composite piece of work

Thus, we can implement sleep sort as…

my @a = (1..20).pick(*);
await @a.map(-> $n {
 Promise.sleep($n).then({ say $n })
})

1

Make your own Promise

While an async block produces a Promise backed by
code scheduled on the thread pool, you can put anything

that will later produce a value or exception behind one

Simply create a new Promise…

…and then call either keep or break some point later:

Has a then, can participate in combinators, etc…

my $p = Promise.new;

$p.keep($value);

Example: nth_or_timeout (1)

Making our own Promise objects that we keep or
break is useful for implementing new combinators

Our timeout mechanism earlier sucked because the

computation continued even after the timeout, and we
had to introspect the timeout Promise

Would be nice to just have written:

say await nth_or_timeout(
 (1..Inf).grep(*.is-prime),
 2000,
 10);

2

Example: nth_or_timeout (2)

sub nth_or_timeout(@source, $n, $timeout) {
 my $p = Promise.new;
 my $t = Promise.sleep($timeout);
 ...
 $p
}

Example: nth_or_timeout (3)

sub nth_or_timeout(@source, $n, $timeout) {
 my $p = Promise.new;
 my $t = Promise.sleep($timeout);
 async {
 my $result;
 ...
 $p.keep($result);
 }
 $p
}

Example: nth_or_timeout (4)

sub nth_or_timeout(@source, $n, $timeout) {
 my $p = Promise.new;
 my $t = Promise.sleep($timeout);
 async {
 my $result;
 for ^$n {
 if $t.status == Kept {
 $p.break('Timed out');
 last;
 }
 $result = @source[$n];
 }
 $p.keep($result);
 }
 $p
}

Beyond scalars

Promises are all about a single value (or the failure to
produce one due to an error)

However, in Perl we don’t just have scalars, but also

arrays and hashes

A Channel represents a set of values delivered
asynchronously

A KeyReducer represents a hash whose keys and values

are contributed asynchronously

Channels

Provide a thread-safe synchronization mechanism based
around a queue

A channel is created like this:

Work happening on one or more threads can send:

Meanwhile, one or more others can receive:

my $c = Channel.new;

$c.send($result);

my $val = $c.receive;

Channels example (1)

A recent example from my work involved a conveyor belt
of agricultural product (maybe wheat) having moisture

content readings arriving from a sensor at irregular
intervals (often a few a second, sometimes a whole

second between them). We may simulate it as:

my $belt_chan = Channel.new;
async {
 loop {
 $belt_chan.send(rand xx 100);
 await Promise.sleep((0.15, 0.25, 1).pick);
 }
}

Channels example (2)

Something else can receive these readings and do the
required calculation on them

Here, we just do an average, but of course the actual

work being done in the real world system is vastly more
complicated!

Note that receive is a blocking operation

loop {
 my @values = $belt_chan.receive;
 say [+](@values) / @values.elems;
}

3

The select function (1)

Often, there are multiple channels that may be producing
interesting values, and you want to take action based on

whichever one has a value available

For example, it may be that occasionally a control reading
is taken by analyzing a scoop of the product:

my $sample_chan = Channel.new;
async {
 loop {
 await Promise.sleep((5, 10, 15).pick);
 $sample_chan.send(rand);
 }
}

The select function (2)

The select function takes a list of pairs, mapping channels
to a closure to execute if the channel can receive

loop {
 select(
 $belt_chan => -> @values {
 say "BELT: {[+](@values) / @values.elems}";
 },
 $sample_chan => -> $sample {
 say "SAMPLE: $sample";
 }
);
}

select works on Promises too

You can also use select to take different action depending
on which Promise gets kept/broken first, or even do a

mixture of channels and promises

my $run_ends = Promise.sleep(30);
loop {
 select(
 $belt_chan => -> @values { … },
 $sample_chan => -> $sample { … },
 $run_ends => -> $ {
 say "End of measurement!";
 exit;
 }
);
}

4

Channel combinators (1)

Just like we could write Promise combinators, such as
nth_or_timeout, we can also write channel ones

For example, we may like to write one that collects the

belt measurements made in 2 seconds and send them as
a group, on some other channel

my $b2s_chan = collect_per_interval($belt_chan, 2);
loop {
 sub avg(@m) { [+](@m) / (@m.elems || 1) }
 my @measurements = $b2s_chan.receive;
 say avg(@measurements.map(&avg)) ~
 " (from @measurements.elems() measurements)";
}

Channel combinators (2)

sub collect_per_interval(Channel $chan, $seconds) {
 my $res = Channel.new;
 …
 $res
}

Channel combinators (3)

sub collect_per_interval(Channel $chan, $seconds) {
 my $res = Channel.new;
 async {
 my $period = Promise.sleep($seconds);
 my $accum = [];
 …
 }
 $res
}

Channel combinators (4)

sub collect_per_interval(Channel $chan, $seconds) {
 my $res = Channel.new;
 async {
 my $period = Promise.sleep($s econds);
 my $accum = [];
 loop {
 select(
 $chan => -> $msg { $accum.push($msg) },
 $period => -> $ {
 $res.send($accum);
 $accum = [];
 $period = Promise.sleep($seconds);
 }
)
 }
 }
 $res
}

5

The KeyReducer

Promise is a synchronization mechanism for single values,
and Channels are a synchronization mechanism for

sequences of values, either finite or infinite

What if you want to have many parallel workers
producing associative (key/value) data, and then collapse

it down to a single hash?

This is what the KeyReducer is for. It's a way to have
work going on in many threads contribute to a hash,

which can be snapshotted or reach some final state at
which point no more contributions are allowed

Example: variable name counter (1)

We need to count the number of occurrences of different
variable names across many source files

Want to do the counts per file in parallel, and then safely

incorporate them into a single result hash

First value just goes into the result hash, followup ones
just get summed

my $var_counts = KeyReducer.new(
 -> $first { $first },
 -> $cur, $next { $cur + $next
});

Example: variable name counter (2)

Process each file in an async block, counting its variables
then contributing them to the overall result

await dir('src/core').map(-> $file {
 next if $file.d;
 async {
 my %results;
 my $src = slurp($file);
 for $src.match(/<[$%@]> \w+/, :g) -> $var {
 %results{~$var}++;
 }
 $var_counts.contribute(%results);
 }
});

Example: variable name counter (3)

Finally, obtain the result hash, sort its pairs by the
number of variable occurrences descending, and output

the name and count

Our overall approach is really just a form of map-reduce,
with the mapping distributed over multiple CPU cores

Promise, Channel and KeyReducer are

synchronization primitives for different shapes of data

for $var_counts.result.sort(-*.value) -> $res {
 say "$res.key() is used $res.value() times";
}

6

Asynchronous I/O

Those of you familiar with asynchronous I/O will have
realized that many of these examples are going to end up

clogging up the thread pool by doing blocking I/O

We'd prefer to issue the requests to read files into
memory asynchronously, and only execute work in the

thread pool once we have the data

Rakudo on JVM is in the process of gaining support for
asynchronous I/O, and there is enough in place to revisit

our previous example and improve it

Basic asynchronous I/O example

The slurp method on IO::Async::File returns a
Promise that, if/when kept, has the file contents

Can use the familiar then method on it:

await dir('src/core').map(-> $path {
 next if $path.d;
 IO::Async::File.new(:$path).slurp().then(-> $f {
 my %results;
 for $f.result.match(/<[$%@]> \w+/, :g) -> $var {
 %results{~$var}++;
 }
 $var_counts.contribute(%results);
 })
});

Asynchronous I/O: much to come

What's there so far is very much a work in progress

So far you can only slurp (which gives a Promise) or
lines (which gives a Channel to which each line is sent)

Really, though, it's asynchronous I/O on sockets that is

the really interesting thing

Getting sockets ported has been one of the things left
fairly late in the Rakudo on JVM work (something has to
be), but it's underway now; should have something to

see on this within the next couple of months

Other things in the pipeline

Hyper-operators for data-parallel operations

The hyper and race list contexts, which process map,
grep and so forth in parallel (also data-parallel)

Feed operators for setting up producer/consumer chains
(probably just a convenient sugar for a Channel use case)

Exposing various lower-level primitives – not for direct

use by the everyday programmer, but for those building
the higher level pieces or with special requirements

Closing thoughts

There's no "one true way" in this area, which fits well
with the Perl mindset – but being able to compose our
use of different parallel and async operations matters

Shared memory is sometimes useful, but experience

shows that it's all too often screwed up

By contrast, higher level synchronization tools (promises,
channels, reducers) come with simpler usage rules and

typically lead to more composable solutions

This is only the beginning; stay tuned!

Thank you!

Questions?

Blog: 6guts.wordpress.com
Twitter: @jnthnwrthngtn
Email: jnthn@jnthn.net

