
Rakudo Perl 6
on the JVM

Jonathan Worthington

About Rakudo

Most complete and most actively developed
Perl 6 implementation

Compiler + built-ins

66 monthly releases to date

10-20 code contributors per release
(but we draw on many other contributions

too: bug reports, test suite work, etc.)

About the JVM

JVM = Java Virtual Machine

Runtime originally built for the Java language, but
now plays host to dozens of others

Heavily optimized, solid threading support, battle

hardened, and widely deployed

Lots of libraries, frameworks, etc.

"Isn't the JVM for static languages?"

It's long been feasible, even if not convenient, to
target the JVM for dynamic languages

These days, serious interest from JVM developers

Use invokedynamic instruction to teach the JVM
how your language does dispatch, invocation, etc.

Perl 6 is neither statically nor dynamically typed,

but rather gradually typed

What runs on the JVM?

 Java (of course!)

What runs on the JVM?

 Java (of course!)
 COBOL

What runs on the JVM?

 Java (of course!)
 COBOL
 JavaScript
 Python
 Ruby
 Tcl
 Lua

What runs on the JVM?

 Java (of course!)
 COBOL
 JavaScript
 Python
 Ruby
 Tcl
 Lua

 So, where is Perl?

Not a new realization

Patrick Michaud, Rakudo Perl 6 pumpking, was
speaking with Jesse Vincent, a former Perl 5
pumpking, at YAPC::NA in Pittsburg in 2009

All of the major scripting
languages except Perl have
implementations on JVM and
.NET.

Perl 6 is Perl's best (only?) hope
for running on JVM/.Net.

"Run anywhere"

Once, this was just about running on a wide array
of operating systems and CPU architectures

Perl 5 is very good at this

However, today some of the "anywhere"s are

virtual machines

Perl 6's split of specification and implementation
are better suited to cope with this

Other motivations

Rakudo on Parrot is often annoyingly slow

Being able to run on well tuned VM with good
profiling tools should provide either better

performance and/or better understanding of
performance problems (hopefully both!)

Also wanted a solid base to explore and solidify
the spec around the parallel and asynchronous

parts of the Perl 6 language JVM can help here

But how to get there?

Ruby and Python both have "original" C
implementations and separate JVM

implementations (JRuby, Jython)

Perl 6, like Perl 5, is a large language and is not
easy to implement

Starting from scratch is costly

What about making Rakudo target the JVM too?

Program
Text

Parse

Source Tree

Target Tree

Code Gen
Compiled

Output

What a compiler does

What a compiler does

Frontend

Backend

Program
Text

Parse

Source Tree

Target Tree

Code Gen
Compiled

Output

The frontend

All about a specific language

Syntax, runtime semantics, declarations...

Program
Text

Parse

Source Tree

Frontend

The backend

All about the target runtime

Map HLL concepts to runtime primitives

Target Tree

Code Gen
Compiled

Output
Backend

Rakudo compiler architecture

Loosely coupled sequence of stages that...

Take a well-defined data structure as input
and

Produce a well-defined data structure as output

Each stage may be relatively complex. However, it
is also completely self-contained.

An FP design, factored OO-ly.

QAST ("Q" Abstract Syntax Tree)

The data structure used to communicate between
frontend and backend

A tree with around 15 node types

QAST::Op
op => 'add_i'

QAST::Var
name => '$x'

QAST::IVal
value => 1

The plan

Tease out places where the frontend was overly-
coupled to the Parrot backend

Then add a JVM backend

Program
Source

Frontend

QAST Tree
Parrot backend

JVM backend

Your backend here

But wait, what about the compiler?

It's all well and good to get Rakudo to target the
JVM, but what about eval?

Thankfully, Rakudo is written in NQP, a Perl 6

subset

Furthermore, NQP is written in itself

Can use an NQP to JVM compiler to build both
NQP and Rakudo on the JVM!

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

NQP Perl 6 VM Specific Code VM

Overall architecture

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Overall architecture

QAST 6model nqp::ops
VM

Abstraction

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Overall architecture

QAST 6model nqp::ops
VM

Abstraction

Parrot

VM
Specific

PIRT

Other
Backends

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Overall architecture

QAST 6model nqp::ops
VM

Abstraction

Parrot

VM
Specific

PIRT

Other
Backends

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

JVM

JAST

Overall architecture: JVM plan

Step 1: JAST JVM bytecode

JVM Abstract Syntax Tree: a bunch of classes in
NQP that can be used to describe Java bytecode

Steadily built up it up, test by test

jast_test(
 -> $c {
 my $m := JAST::Method.new(:name('one'), :returns('I'));
 $m.append(JAST::Instruction.new(:op('iconst_1')));
 $m.append(JAST::Instruction.new(:op('ireturn')));
 $c.add_method($m);
 },
 'System.out.println(new Integer(JASTTest.one()).toString());',
 "1\n",
 "Simple method returning a constant");

Bytecode generation? Boring!

Really, really did not want to have to do the actual
class file writing. Thankfully, could re-use an
existing library here (first BCEL, later ASM).

Step 2: basic QAST JAST

Now there was a way to produce Java bytecode
from an NQP program, it was possible start

writing a QAST to JAST translator

This also involved building out runtime support –
including a JVM implementation of 6model

Also approached in a test driven way

Test suite useful for future porting efforts

Step 2: basic QAST JAST

qast_test(
 -> {
 my $block := QAST::Block.new(
 QAST::Op.new(
 :op('say'),
 QAST::SVal.new(:value('QAST compiled to JVM!'))
));
 QAST::CompUnit.new(
 $block,
 :main(QAST::Op.new(
 :op('call'),
 QAST::BVal.new(:value($block))
)))
 },
 "QAST compiled to JVM!\n",
 "Basic block call and say of a string literal");

Step 3: NQP cross-compiler

Took existing grammar/actions/world from NQP
on Parrot, and plugged in the JVM backend

Took about 20 lines of code.

Design win!

NQP Frontend

QAST Tree

JVM backend

Step 4: cross-compile NQP

Use the NQP cross-compiler to cross-compile NQP

Hit various missing pieces, and some things that
needed further abstraction

End result: a bunch of class files representing a

standalone NQP on the JVM!

NQP Cross-Compiler
running on Parrot

NQP
Sources

NQP
Sources

NQP
Sources

NQP
Sources

NQP
Sources

NQP
on JVM

Step 5: close the bootstrap loop

Could NQP running on
the JVM also build a

fresh NQP for the JVM
from source?

NQP on JVM

Answer: yes, once some missing pieces were
completed (such as serialization)

\/

Merged into NQP master in late April

Included in the May release of NQP

Rakudo: first port the compiler

Rakudo is broken into the compiler itself and
various built-ins, including meta-objects. The

compiler is used to build some of those built-ins.

Actions

World

Grammar

MOP +
Bootstrap

CORE Setting
(built-ins)

Compiler

Builds

Loads

Compiler, MOP and bootstrap

While the Perl 6 grammar and actions are much
larger and more complex than their NQP

equivalents, they don't really use anything new

Similar story for the various meta-objects

The bootstrap was a different story. It contains a
huge BEGIN block that does a lot of setup work,
piecing together the core Perl 6 types. This gets

done at compile time, and is then serialized.

The setting: bit by bit, or all in one?

The CORE setting contains the built-in types and
functions. It forms the outer scope of your

program.

13,250
lines of Perl 6

That's a tough first test.

From line 0 to line 100 was O(week)

From line 100 to 1000 was O(week)

From line 1000 to 2000 was O(day)

From line 2000 to 13000 was O(day)

Screw it, let's do it all anyway...

What makes it hard?

Compiling the setting isn't just compiling

On line 137:

Yup, compiling the Perl 6 setting means running
bits of Perl 6 code

Also traits, constants…

BEGIN &trait_mod:<is>.set_onlystar();

"Hello, JVM"

Finally...

Remember, this is running the compiler itself and
loading just about all the core setting on the JVM;

no Parrot required anywhere in the build!

Just "hello world", but not cheating at all
(Well, apart from where we were...)

$ perl6 -e "say 'Hello, JVM'"
Hello, JVM

The specification test suite

The written Perl 6 specification is also expressed
as a test suite (the "spectests")

Automated daily runs (thanks to Coke++)

So far, Rakudo on JVM is passing

99.28%

of the spectests that Rakudo on Parrot does

Java interoperability

So, now we can run much of Perl 6 on the JVM,
but can we call into Java libraries?

Java interoperability

So, now we can run much of Perl 6 on the JVM,
but can we call into Java libraries?

use java::util::zip::CRC32:from<java>;

my $crc = CRC32.new();

for 'Hello, Java'.encode('utf-8') {
 $crc.'method/update/(B)V'($_);
}

say $crc.getValue();

Java interop: SWT example (1)

The Standard Widget Toolkit is the library used by
the Eclipse IDE to build its user interface

Not in the standard class library, so need to

explicitly name the JAR file to loads the various
classes we'll use from

constant SWTJAR = 'org.eclipse.swt.win32.jar';
use org::eclipse::swt::SWT:from<java>:jar(SWTJAR);
use org::eclipse::swt::widgets::Display:from<java>:jar(SWTJAR);
use org::eclipse::swt::widgets::Shell:from<java>:jar(SWTJAR);
use org::eclipse::swt::widgets::Text:from<java>:jar(SWTJAR);

Java interop: SWT example (2)

my $display = Display.'constructor/new/()V'();
my $shell =
 Shell.'constructor/new/(Lorg/eclipse/swt/widgets/Display;)V'(
 $display);

my $helloWorldTest = Text.new($shell, SWT.'field/get_NONE/I'());
$helloWorldTest.setText("Hello from Perl 6");
$helloWorldTest.'method/pack/()V'();

$shell.'method/pack/()V'();
$shell.open();
until $shell.isDisposed() {
 $display.sleep unless $display.readAndDispatch();
}
$display.dispose();

Use those types to display a window

Java interop: status

The basic things work

Plumbing layer by sorear++ is pretty capable

Sugar layer to make it convenient still needs
plenty of improvements

Also need to work on calling into Perl 6 code from

Java (or other JVM language) code

Is it any faster?

Startup time is awful. Such is the JVM.

Once it gets going and the JIT kicks in, it typically
beats Rakudo on Parrot. How much it wins by

depends on the nature of the work.

To put this in context, remember that we've been
working at performance on Parrot for years, and

the (largely unoptimized) JVM backend started 10
months ago is often coming out ahead anyway!

A real world result

...the script executed correctly in 11 minutes under Rakudo-JVM. ... It also
executed correctly in Rakudo-Parrot -- but in 7 hours, 52 minutes.

Let me emphasize that. For this real-world task of significant size, Rakudo-
JVM was 40 times faster than Rakudo-Parrot.

The script is pretty basic core stuff, mostly file I/O, grammar parsing, and
hashes. The improvement is much smaller on a small data-set -- on my
small test file, Rakudo-JVM is not even twice as fast as Rakudo-Parrot. But
throw a big task (well, this big task, anyway) at Rakudo, and Rakudo-JVM
crushes Rakudo-Parrot.

colomon

Threading?

Oh, yes.

Come to tomorrow's talk!

Main room, same time.

What next?

Chip away at the remaining < 1% of specification
tests that pass with Rakudo on Parrot, but fail

with Rakudo on the JVM
(Goal: late August)

Get the module ecosystem and module installer

(Panda) working well on Rakudo JVM, then create
a JVM-based Rakudo Star distribution release

(Goal: September/October)

JVM backend weaknesses

Startup time is currently awful. Perfect storm of
JVM startup being relatively slow, and us doing
too much work at startup, before JIT kicks in.
 can be improved somewhat, with effort

While the commitment to invokedynamic seems

serious, in reality it's new. I've run into bugs.
will very likely improve, with time

And, of course, ecosystem stuff is to come

 "just" needs more work

There's more than one way to run it

Running on multiple backends is very much in the
TMTOWTDI spirit of Perl

Contrast with how other languages are doing it:

Rakudo is targeting multiple backends with a
single implementation, rather than one per VM

Vision

Rakudo Perl 6 runs well on a number of platforms,
and is fast and reliable enough for most tasks

Modules, debugger, etc. work reliably on the

different backends

Most development effort goes into the things that
are shared, rather than they VM specific stuff

Perl 6 users build great stuff, and enjoy doing so

Thank you!

Questions?

Blog: 6guts.wordpress.com
Twitter: @jnthnwrthngtn
Email: jnthn@jnthn.net

