
MoarVM
A metamodel-focused runtime for

NQP and Rakudo

Jonathan Worthington

What does a VM typically do?

Execute instructions (possibly by interpreting, possibly by
JIT compilation, often a combination)

Provide memory management (both allocation and
deallocation, typically through garbage collection)

Offer a range of built-in data structures and instructions

to operate on them (strings, arrays, objects, …)

Abstract away the details of the underlying OS and
expose a common interface to IO, threading, etc.

Perl 6 and VMs

Original plan
Build the Parrot Virtual Machine in parallel with the Perl

6 language design, and then build a Perl 6
implementation that targets it

Reality today

Rakudo Perl 6, originally only targeting Parrot, now also
runs on the JVM, with active work on other backends;

additionally, the Niecza Perl 6 implementation targets the
.NET CLR (Common Language Runtime)

Concerns

The Parrot project hasn't been as successful as hoped,
due to a large number of factors

Performance has certainly been a problem, as is evolving

a 10+ year old codebase that partially implements the
visions of multiple architects over time

While running on the JVM and CLR is fine – or even

desirable – for some potential Perl 6 users, others have
reasons for not using these platforms ("Oracle are evil",

"Microsoft are evil", "JVM startup is too slow"…)

The ignorance curve

As time passes, ignorance of a domain decreases…

Ignorance

Time

The ignorance curve

…and often there's an "aha!" moment

Ignorance

Time

Aha!

The ignorance curve

…and often there's an "aha!" moment

Ignorance

Time

Aha!

(Around the
time of the

"nom" branch
for Rakudo)

We know what we need now

Parrot was built assuming Perl 6 would be like Perl 5 in
some deep ways. It was as good a guess as could really be

made, but implementing what Perl 6 worked out to be
out of those assumptions felt a bit like this:

Example: namespaces

In the early days of Parrot development, much time was
spent discussing how to implement namespaces

In the end, it turned out that Perl 6 doesn't want a global
namespace (because of separate compilation) and that

stashes just hang off type objects representing packages
 Rakudo basically can't use Parrot namespaces

A single flat hash of
names, name-mangled in

some way…

No! Hierarchical
namespaces, something

hash-of-hash like…

What if...

We take what we know now about what Perl 6 needs

and

Implement a VM that does precisely those things?

Ungoals

Run all the languages!

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Have a textual assembly/intermediate language

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Have a textual assembly/intermediate language

Don't waste time on this; compilers want to emit a tree

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Have a textual assembly/intermediate language

Don't waste time on this; compilers want to emit a tree

Publicly discuss every design call for weeks

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Have a textual assembly/intermediate language

Don't waste time on this; compilers want to emit a tree

Publicly discuss every design call for weeks
Initial year of development in private; only go public
when it's capable enough we can run some NQP on it

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Have a textual assembly/intermediate language

Don't waste time on this; compilers want to emit a tree

Publicly discuss every design call for weeks
Initial year of development in private; only go public
when it's capable enough we can run some NQP on it

Add threads later

Ungoals

Run all the languages!
If we don't need a feature for Perl 6, we don't add it

Have a textual assembly/intermediate language

Don't waste time on this; compilers want to emit a tree

Publicly discuss every design call for weeks
Initial year of development in private; only go public
when it's capable enough we can run some NQP on it

Add threads later

Get threads and threaded GC in early, even if not perfect

Overall design

Use 6model, the object system designed for Rakudo Perl
6, for all of the object-like things

Generational garbage collection with parallel (but not

concurrent) collection

Instruction set aligned with the nqp:: opcode set

Unicode support with NFG strings

Use 3rd-party libraries for things outside the core domain

6model

Provides primitives for building an object system

Every object in MoarVM is a 6model object
 one object system for the whole VM

By "object" we mean…

The things you think of as objects

Arrays
Hashes

Boxed integers, floats, etc.
Threads, handles, …

Inside 6model

An object has a header…

Object

STable

Flags, owner

GC stuff

<body>

Inside 6model

…which points to an STable (representing a type)…

Object

STable

Flags, owner

GC stuff

<body>

STable

HOW (Meta-object)

REPR

WHAT (type object)

WHO (stash)

Method cache

Type check cache

Inside 6model

…which has a representation that manages the body…

Object

STable

Flags, owner

GC stuff

<body>

STable

HOW (Meta-object)

REPR

WHAT (type object)

WHO (stash)

Method cache

Type check cache

Inside 6model

…and points to some objects important to the type

Object

STable

Flags, owner

GC stuff

<body>

STable

HOW (Meta-object)

REPR

WHAT (type object)

WHO (stash)

Method cache

Type check cache

O
b

je
ct

s

Representations

All about the use of memory by an object

REPR API has a common part (allocation, GC marking)
along with several sub-protocols for different ways of

using memory:

Representations are orthogonal to type (and thus dis-
interested in method dispatch, type check, etc.) and also

non-virtual (if you know the REPR, can inline stuff)

Attributes Boxing

Positional Associative

GC needs

Perl 6 produces a LOT of short-lived objects as it runs
 allocation should be cheap

 we'll need to run GC frequently
 throwing away objects should be cheap

By contrast, other objects – such as meta-objects for

declared classes – live for a very long time
 don't want to examine them every collection

when we know they will live for a long time from
initial allocation, want to use that knowledge

Would also like to use multiple threads

GC design

2 generations, known as nursery and gen2

The nursery is where most objects are allocated (when
we know we have long lived, allocate right in gen2)

That surviving 2 nursery collections are promoted

GC design: nursery

Semi-space copying collector

Allocate objects one after the other in a memory chunk

When it fills, copy each living object into a new memory
chunk, thus compacting them

Those that are dead are simply not copied

Next allocation here

GC design: gen2

Most objects are stored in size-specific pools, which
avoids fragmentation

Objects found to be dead during a full garbage collection

are added to a free list, chained through the pool

Once in gen2, objects don't move (for now, at least;
maybe some day we'll do compaction)

Objects too large to fit into any of the sized pools are

allocated and managed separately

nqp::op aligned opcode set

In NQP and Rakudo, all operations that we can perform in
a VM-independent way are captured in the nqp:: op set

Covers arithmetic, string manipulation, array and hash

operations, object operations, I/O, and a few specialized
things for the grammar engine

The MoarVM instruction set is largely derived from this

 well aligned with what we need

This alignment and more compact instruction code seems
to lead to bytecode files 1/3 the size of on Parrot

Unicode support

 MoarVM includes the Unicode Character Database so far
as we need it for Perl 6

No external dependencies (like ICU)

Rather well compressed; even with all of this included,

the full MoarVM executable weighs in at ~2.5MB

Support the various case change operations, character
property lookups (also used for regex character classes),

character name resolution…

NFG

NFC (Normalization Form C) will always collapse a
codepoint followed by a combining codepoint into a

single codepoint if one is available

o (U+006F) + ̈ (U+0308)  ö (U+00F6)

NFG (G = Grapheme) takes it a step further; if a single
codepoint is not available, it makes one up (relying on
being able to use negative integers to represent these)

This means we can treat even strings with combining

characters as fixed width and get things right!

Tree  bytecode, no assembler

The MoarVM AST (commonly written "MAST") is a low-
level tree representation of a program

We turn this directly into MoarVM bytecode, with

various bits of validation along the way to catch common
code generation mistakes

12 different node types

CompUnit Frame Op SVal

IVal NVal Label Local

Lexical Call Annotated HandlerScope

Threadsafe, with a lock-free bias

Considered thread safety of the VM's data structures
from the start, and watch for violations in code review

We use mutexes in some places

However, many places – especially anything on a hot path

– uses atomic operations in place of locks

For example, frame reference counts are incremented
and decremented using atomic operations

Scales way better than locks all over the place!

Use existing libraries

APR (but libuv soon)
For I/O and thread abstraction

uthash

For our hashes

libatomic_ops
For atomic operations

libtommath

For big integer operations

MoarVM status

The heart of the VM is in place:

Bytecode interpreter
Most of 6model

Generational, parallel GC
String and Unicode support

Basic thread support
Basic I/O support

Current branches are attacking NFG as well as migrating

from using the APR to using libuv, which will enable
provision of asynchronous I/O

NQP on MoarVM status

Along with MoarVM, we've been building an NQP cross-
compiler, just as happened earlier on in the JVM port

Runs on Parrot, turns QAST into a MAST tree, then has

the tree turned into MoarVM bytecode

By now it can cross-compile and run the majority of the
NQP test suite, as well as many of the NQP libraries

On course to achieve a self-hosted NQP on MoarVM

some time in September

In the next six months...

Get NQP bootstrapped on MoarVM

Get Rakudo running and passing spectests on MoarVM

Perl 5 interoperability (ask diakopter++ for more info)

Harden and exercise threading; add the primitives we
need for Rakudo Promise, Channel, etc.

Asynchronous I/O support

And, of course, lots of bug hunting/fixing

Looking further...

Rakudo * distribution release on MoarVM

Full NFG support

6model-aware JIT compilation, including inlining and
specializing code by type

Runloop meta-model, for providing a mechanism to build

profilers, debuggers, etc.

No doubt, lots more performance work and bug fixes

Want to know moar?

IRC Channel:
#moarvm on freenode.org

Git repository:

https://github.com/MoarVM/MoarVM

Thank you!

Questions?

Blog: 6guts.wordpress.com
Twitter: @jnthnwrthngtn
Email: jnthn@jnthn.net

