
Objects
∩

Concurrency

Jonathan Worthington

Hi. I'm Jonathan.

Perl 6 concurrency

The work so far is mostly on
functional constructs

Focus on computations that

produce results "in the future",
and avoid having state

Promises

Things that produce a single
result in the future (some
code, a one-shot timer, a

process exit code…)
my $proc = Proc::Async.new('tracert', 'jnthn.net');
my $promise = $proc.start;
my $exit = await $promise;

Promise combinators

Combine promises in various
useful ways; here we mix an

async process and time

my $proc = Proc::Async.new('tracert', 'jnthn.net');
my $tracert-done = $proc.start;
await Promise.anyof($tracert-done, Promise.in(10));
$proc.kill unless $tracert-done;

Supplies

Represents things that may
produce many values over
time, asynchronously, and
maybe from many threads

my $secs = Supply.interval(1);
my $tt = $secs.map({ $_ %% 2 ?? 'Tick' !! 'Tock' });
$tt.tap(&say);
sleep 10;

Example: code golf assistant

Type code here
Char count updates

automatically

Run code in background
thread and show result

Show how much
time I've wasted

Example: code golf assistant

UI setup code
my $app = GTK::Simple::App.new(
 title => 'Code Golf Assistant!');

$app.set_content(GTK::Simple::VBox.new(
 my $source = GTK::Simple::TextView.new(),
 my $chars = GTK::Simple::Label.new(
 text => 'Characters: 0'),
 my $elapsed = GTK::Simple::Label.new(),
 my $results = GTK::Simple::TextView.new(),
));

Example: code golf assistant

UI events can be seen as an
asynchronous sequence of
values, so supplies fit well!

$source.changed.tap({
 $chars.text =
 "Characters: $source.text.chars()";
});

Example: code golf assistant

Ticking seconds are just an
interval - but we must update
the UI on the correct thread!

Supply.interval(1).schedule_on(
 GTK::Simple::Scheduler
).tap(-> $secs {
 $elapsed.text = "Elapsed: $secs seconds";
});

Example: code golf assistant

When code is unchanged for a
second, eval it on a thread…

$source.changed.stable(1).start({
 (try EVAL .text) // $!.message
})
…

Example: code golf assistant

…and show (latest!) result on
the UI - using the UI thread

$source.changed.stable(1).start({
 (try EVAL .text) // $!.message
}).migrate().schedule_on(
 GTK::Simple::Scheduler
).tap(
 { $results.text = $_ }
);

Threads and mutable shared
state is a source of bugs


Factor synchronization and

shared state out of user code


WIN!

So where does
this leave OO?

If state tends to make
concurrency hard…

…and objects are stateful…

…are objects and
concurrency a bad mix?

NEIN!

What are objects really about?

Hiding state inside of an
encapsulated boundary

Defining invariants on that

state, and ensuring mutating
methods always uphold it

Good objects bound state

State protected inside the
object, and interacted with

through calling methods


Method call is a natural point
of concurrency control

Avoid getters, dammit!

Getters are outright dangerous
on mutable attributes

Even on immutable ones, risk

logic leaks. Remember: tell
objects things, don't ask!

Avoid setters, dammit!

Objects should expose
meaningful mutating

operations, which ensure
invariants are upheld

Method = object transaction

3 approaches

There's more than one way to
put objects to work in a

concurrent situation.

We'll examine three of them,
with different use cases.

Monitors

Just like classes, they have
attributes and methods

But only one thread may be

inside the monitor's methods
at a time (so recursion is OK)

Concurrent calls block

If a thread is running one of
the monitor's methods, other

callers must queue up

$mon.foo()

$mon.bar() WAIT

use OO::Monitors;

monitor IPFilter {
 ...
}

Example: IP filter

Use the Monitors module,
which adds a monitor

package declarator

monitor IPFilter {
 has %!blacklist;
 has %!active;
 has $.limit = 10;
 has $.blocked = 0;

 ...
}

Example: IP filter

Declare state, knowing only
one thread can use it at a time

method add-to-blacklist($ip) {
 %!blacklist{$ip} = True;
}

method remove-from-blacklist($ip) {
 %!blacklist{$ip}:delete;
}

Example: IP filter

Write methods that work with
that state

method should-start-request($ip) {
 if %!blacklist{$ip} ||
 (%!active{$ip} // 0) == $.limit {
 $!blocked++;
 return False;
 }
 %!active{$ip}++;
 return True;
}

method end-request($ip) {
 %!active{$ip}--;
}

Example: IP filter

my $phil = IPFilter.new(limit => 5);

my @ips = '12.13.14.' <<~<< ^128;
$phil.add-to-blacklist(@ips.pick);
await do for ^4 {
 start {
 for ^100 {
 $phil.should-start-request: @ips.pick;
 $phil.end-request: @ips.pick;
 }
 }
}

say "Blocked $phil.blocked() requests";

Simulating 4 request threads

Monitors with conditions

Sometimes, a monitor can not
proceed until another thread

makes a (separate) change

Conditions allow us to handle
such scenarios

Build a bounded queue

Adds should block if the queue
is full, and removes should
block if the queue is empty

monitor PriorityQueue
 is conditioned(< not-full not-empty >) {
 ...
}

Declare the conditions

Declare the monitor with two
wait conditions: not-full

and not-empty

monitor PriorityQueue
 is conditioned(< not-full not-empty >) {
 has @!tasks;
 has $.limit = die "Must specify a limit";
 ...
}

Add the state

Declare queue tasks storage
along with a task limit

method add-task($task) {
 while @!tasks.elems == $!limit {
 wait-condition <not-full>;
 }
 @!tasks.push($task);
 meet-condition <not-empty>;
}

Adding a task

Wait for not-full if needed,
add task, meet not-empty

method take-task() {
 until @!tasks {
 wait-condition <not-empty>;
 }
 meet-condition <not-full>;
 return @!tasks.shift;
}

Taking a task

Wait for not-empty if needed,
take task, meet not-full

Monitors: sometimes good

Relatively simple mechanism
and programming model

Easy to go from a (well

designed) class to a monitor

Monitors: sometimes bad

Under contention, monitors
cause threads to block

Vulnerable to deadlock, though
much less so than unstructured

application of locks

Actors

As with monitors, only one
thread can be in a given

method at a time

However, the method calls are
asynchronous/non-blocking

How Actors (basically) work

Calls are put in a "queue", and
a (pool) thread processes them

$acr.foo(1)

$acr.bar(2)

Run foo (1) Run bar (2)

Example: logging

Want to log events at a range
of severity levels

Many threads can log, and
don't want to block execution

enum Severity <Fatal Error Warning Notice>;

use OO::Actors;

actor EventLog {
 has %!events-by-level{Severity};
 ...
}

Stubbing the actor

Use the Actors module, declare
the actor, and give it state

using attributes

Methods

method log(Severity $level, Str $message) {
 push %!events-by-level{$level}, $message;
}

method latest-entries(Severity $level-limit) {
 my @found;
 for %!events-by-level.kv -> $level, @messages {
 next if $level > $level-limit;
 push @found, @messages;
 }
 return @found;
}

Using the actor

Can have many threads calling
methods on it. Note they are

executed asynchronously!
my $el = EventLog.new;
await do for ^4 {
 start {
 $el.log(Severity.pick, 'OMG') for ^100;
 }
}

Querying the actor

Since execution is async, the
method call can't return the
result! Instead, it returns a

Promise that will be kept with
the result in the future.

say await $el.latest-entries(Fatal);

Actors go much further

This is only a very basic
implementation. Actors also

have supervision, which is how
they manage to work robustly
and recover from failures. But

that's for a future talk… 

Actors: great but different

Solve the blocking issues
associated with monitors

However, need their callers to

be designed expecting
asynchronous execution also

Considering mutating methods

Mutating methods typically
consist of validation (to ensure

we won't break invariants)
followed by mutation

die "Seat $seat taken" if %!seat-taken{$seat};
%!seat-taken{$seat} = True;

Introducing events

We could instead have
methods validate, and then
produce an event describing

the decision reached

die "Seat $seat taken" if %!seat-taken{$seat};
return SeatSelected.new(:$.id, :$seat);

Event application

We could then write a separate
event application method,
which grabs data from the

event and mutates the object

multi method apply(SeatSelected $e) {
 %!seat-status{$e.seat} = True;
}

Persistence through events

Given a stream of events, we
can replay them to build up an
object with the current state

We can in turn use it to

validate the next operation

Optimistic concurrency

Since we always work against
a fresh copy of the object, if we

lose the race to produce the
next event, we can simply

produce a fresh object and try
the operation over again!

A quick example: plane seats

Let's consider a simple plane
seat selection object

Events

class FlightOpened {
 has $.id;
 has $.flight-number;
 has @.available-seats;
}

class SeatSelected {
 has $.id;
 has $.seat;
 has $.passenger-name;
}

Exceptions

class X::PlaneSeatingPlan::BadSeat is Exception {
 has $.seat;
 method message() {
 "No such seat $!seat"
 }
}

class X::PlaneSeatingPlan::SeatTaken is Exception {
 has $.seat;
 method message() {
 "Seat $!seat is already taken"
 }
}

The aggregate

We inherit from a class
Aggregate, which provides

event application logic
use Evject;

class PlaneSeatingPlan is Aggregate {
 has %!seat-status;
 ...
}

Opening a flight

This method hasn't much to
validate, and so simply

produces an event
method open-flight($flight-number,
 @available-seats) {
 return FlightOpened.new(:$.id, :$flight-number,
 :@available-seats);
}

Picking a seat

Validates the seat is valid and
free, then produces an event

method choose-seat($seat, $passenger-name) {
 X::PlaneSeatingPlan::BadSeat.new(:$seat).throw
 unless %!seat-status{$seat}:exists;
 X::PlaneSeatingPlan::SeatTaken.new(:$seat).throw
 if defined %!seat-status{$seat};
 return SeatSelected.new(:$.id, :$seat,
 :$passenger-name);
}

Event appliers

Update state based on events

multi method apply(FlightOpened $e) {
 for $e.available-seats -> $seat {
 %!seat-status{$seat} = Nil;
 }
}

multi method apply(SeatSelected $e) {
 %!seat-status{$e.seat} = $e.passenger-name;
}

Infrastructure

We need some way to store
events, and something that

loads objects, runs methods,
and tries to save new events.

use InMemoryEventStore;
my $dom = Domain.new(
 event-store => InMemoryEventStore.new);

And finally…
my @seats = 1..10 X~ <A C D F>;
$dom.process:
 PlaneSeatingPlan, 1,
 *.open-flight('SK123', @seats);

Works fine
$dom.process:
 PlaneSeatingPlan, 1,
 *.choose-seat('2A', 'jnthn');

Exception, seat taken
$dom.process:
 PlaneSeatingPlan, 1,
 *.choose-seat('2A', 'jnthn');

Events are awesome

Here, we used the concept of
events to deal with both
persistence and provide
optimistic, non-blocking,

concurrency control. Plus we
can distribute the events!

Re-thinking "calling"

Some languages name method
calls "message sends"

There's more than one way to
send and process messages -
some good for concurrency

In summary…

Concurrency Model Nature of call

Classes No concurrency
control

Synchronous, calls
immediately

Monitors Mutual exclusion Synchronous, call
may block

Actors Mutual exclusion Asynchronous (so
non-blocking)

Event-Sourced
Aggregates

Optimistic
concurrency control

Synchronous, may
fail and retry

Questions?

