
Reactive Programming
in Perl 6

Jonathan Worthington

Asynchronous data

It's all around us, in all kinds of systems:

Events in GUI applications

Web requests / responses

File change notifications

Ticks of a timer

UNIX signals

Characteristics of asynchronous data

You don't get to choose when the data arrives

Multiple sources of asynchronous data can
produce data in whatever order they please

Responses may arrive out of order with respect to

requests (consider auto-complete)

Is this about threads?

Doesn't have to be

But in reality, sometimes will be

Users like responsive GUI applications
do long computations on a thread
result arrives asynchronously

Many web applications in the world are multi-

threaded (consider .Net or Java, where multiple
request-processing threads are active)

So, in summary…

AAARRRRRRRGGGGHHHHHH!!!!

An aside: lazy processing

Before we look at asynchrony, let's consider
synchrony a bit. We know that normal file I/O is

blocking and synchronous. However, we can work
through the data a little at a time:

This is an example of the iterator pattern - moving
through a list of things one at a time

while (!eof($fh)) {
 my $line = <$fh>;
 next if $line =~ /^\#/;
 # …
}

Working with lists of things

We don't just have to use the typical imperative
programming constructs to deal with lists

 We can factor out the flow control, with things
like map, grep, sort - and many more in Perl 6!

So how does this relate to the iterator pattern?

my @members = get_gold_members();
my @entrants = @members.grep(*.points > 10000);
my @winners = @entrants.pick(10);
my @names = @winners.map(*.name);

Perl 6 lists are lazy!

In Perl 6, normal lists can be processed a bit at a
time. In fact, they can even be infinitely long!

Here we make an infinite list of Fibonacci

numbers, grep out the even ones, and show 10:

Normal assignment is mostly eager - to avoid
giving nasty surprises! So we use binding here.

my @fibs := 1, 1, * + * ... Inf;
my @even_fibs := @fibs.grep(* % 2 == 0);
say @even_fibs[^10];

But who gives a #@%&?

When the hell does the everyday
programmer need the Fibonacci numbers?!

Back to files!

Lines in a file are just a lazy list. So in Perl 6 you
can just write a for loop over the lines in a file:

And, of course, use grep:

my $fh = open('omg-loads-of-data.txt');
for $fh.lines -> $line {
 …
}

for $fh.lines.grep({ !/^ '#'/ }) -> $line {
 …
}

Factoring out flow control

What makes things like map and grep powerful is
they enable us to factor out flow control

Things like uniq and squish go a step further,

and factor out state:

Inside of here is a hash and a whole bunch of
stateful operations on it - that we can forget
 work at a higher abstraction level

my @all_results = @bing_top_10, @google_top_10;
my @uniq_results = @all_results.uniq(:as(*.url));

What if we could do this for asynchrony?

If such a way exists, then we can…

…factor out the complexity and recurring
problems of asynchronous programming

If such a way exists, then we can…

…factor out the complexity and recurring
problems of asynchronous programming

…be able to compose different sources of

asynchronous data in a sane way

If such a way exists, then we can…

…factor out the complexity and recurring
problems of asynchronous programming

…be able to compose different sources of

asynchronous data in a sane way

…make kicking work off to another thread, and
updating a UI with the results, not hurt

If such a way exists, then we can…

…factor out the complexity and recurring
problems of asynchronous programming

…be able to compose different sources of

asynchronous data in a sane way

…make kicking work off to another thread, and
updating a UI with the results, not hurt

…end suffering, bring world peace, make cats and

dogs love each other, and other crap

Enter category theory

Iterators and observers are duals

Iterators
=

Give me a value
Give me a value

…

Observers
=

OMG a value! Do something!
OMG a value! Do Something!

…

What does it all mean?

If we can define something on iterables, then we
can also sanely define it on observables

That is, we can define the familiar operations on

synchronous data on asynchronous data too

Into them we can factor not only flow control and
state, but also thread-safely, synchronization,

running things on the right thread, timing issues -
many of the things that make this all so hard!

Supplies

In Perl 6, we call the thing that can throw
asynchronous data at you a Supply

For example, Interval makes a Supply that can

throw ascending numbers at you per time unit:

This is an on-demand supply; we must tap it
(providing an action) to start getting the ticks:

my $ticker = Supply.interval(1);

$ticker.tap({ say "Started $_ secs ago"; });

map the future!

Thanks to duality, we can implement things like
map and grep on supplies!

These produce a new supply that, when tapped,
will in turn tap its source, transform each value

thrown at it, and throw it onwards:

my $ticker = Supply.interval(1);
my $ticktock = $ticker.map({
 $_ % 2 ?? 'tock' !! 'tick'
});
$ticktock.tap(&say);

Supplies and concurrency

Supplies only introduce concurrency if needed.
For example, the following is single-threaded:

By contrast, our interval example scheduled its
callbacks on the thread pool. If we do not keep

the main thread alive (e.g. by sleeping for a
while), then our program would exit right away.

my $beer = Supply.new;
$beer.tap({ say "I'll drink a $_" });
$beer.more('Chimay');
$beer.more('Duvel');

Let's build something real!

I love Git. Once I hand my work to it, I know that
it won't be lost. But what about before I commit?

Enter inter-commit! It will make backups of files

each time I save them, keeping an index of them.

When I commit, it throws the backups away
automatically (because Git has the files now)

Let's see how we can implement it with Perl 6's

asynchronous programming support

IO notifications

Modern operating systems can provide
notifications upon changes to files

These occur asynchronously, and are thus

exposed in Perl 6 as a supply:

my $commits = IO::Notification.watch_path(
 '.git/logs/HEAD');
$commits.tap({
 say 'OMG a commit!';
});

Clearing the backups on commit

We're going to keep the backups in a directory
.inter-commit. We can thus do the on-commit

cleanup of that directory with:

Now, let's turn to the backups…

my $commits = IO::Notification.watch_path(
 '.git/logs/HEAD');
$commits.tap({
 for dir('.inter-commit') {
 unlink($_);
 }
});

Detecting file changes

Watching a directory produces notifications of
changes to files in that directory:

This works, but oddly we find ourselves getting

duplicate notifications on some platforms:

my $changes = IO::Notification.watch_path('.');
$changes.tap(&say};

Change.new(path => "awesome.p6", event =>
FileChangeEvent::FileChanged)
Change.new(path => "awesome.p6", event =>
FileChangeEvent::FileChanged)

De-duplication

So, how do we de-duplicate them?

A user won't change and save a file more than
once per second - but they may save multiple files

at once. So, we use uniq to filter out duplicates
by path, but make the filter entries expire after a

second has elapsed:

my $all = IO::Notification.watch_path('.');
my $dedupe = $all.uniq(:as(*.path), :expires(1));
$dedupe.tap(&say);

Making the backups

We want to make sure we don't trigger a copy on
changes to the backup directory itself. Other than

that, the rest is not too hard:

IO::Notification.watch_path($dir)\
 .uniq(:as(*.path), :expires(1))\
 .map(*.path)\
 .grep(* ne '.inter-commit')\
 .tap(-> $backup {
 ++state $change_id;
 spurt '.inter-commit/index', :append,
 "$change_id $backup\n";
 copy $backup, ".inter-commit/$change_id";
 });

A slight problem: race conditions

If the user saves a few files together, we may get
the notifications being processed concurrently by

the various threads in the thread pool

We're vulnerable to races on the change ID state
variable as well as appending to the file:

… .tap(-> $backup {
 ++state $change_id;
 spurt '.inter-commit/index', :append,
 "$change_id $backup\n";
 copy $backup, ".inter-commit/$change_id";
 });

Making the backups

The trick is to use act instead of tap. This
promises that the block will never be executed

concurrently (act = actor semantics)

IO::Notification.watch_path($dir)\
 .uniq(:as(*.path), :expires(1))\
 .map(*.path)\
 .grep(* ne '.inter-commit')\
 .act(-> $backup {
 ++state $change_id;
 spurt '.inter-commit/index', :append,
 "$change_id $backup\n";
 copy $backup, ".inter-commit/$change_id";
 });

Putting the pieces together

We'll put the two watchers into private methods,
drop them in a class and create a supply that can

serve as a log of things that happen:

class InterCommitWatcher {
 has $.log;

 submethod BUILD(:$base) {
 $!log = Supply.new;
 self!watch_HEAD();
 self!watch_dir($base);
 }
 …
}

The entry point

Write a MAIN sub so "inter-commit watch"
starts watching, and shows log entries

multi sub MAIN('watch') {
 unless '.git/HEAD'.IO.e {
 note "Use inter-commit in a Git repo";
 exit(1);
 }

 mkdir '.inter-commit';
 my $icw = InterCommitWatcher.new(base => '.');
 $icw.log.tap(&say);
 sleep;
}

Composing multiple asynchronous things

Supplies and the methods available on them were
certainly helpful here - but we were only dealing

with a single source of asynchronous things

For our second example, we'll see how we can
effectively juggle 3 different sources of

asynchronous data, namely:

UI events
Timers

Background computation on a thread

Code golf assistant

Code golf assistant

Type code here

Code golf assistant

Type code here
Char count updates

automatically

Code golf assistant

Type code here
Char count updates

automatically

Show how much
time I've wasted

Code golf assistant

Type code here
Char count updates

automatically

Run code in background
and show result

Show how much
time I've wasted

I had a slight problem…

Nobody wrote a GTK binding for Perl 6 yet

I had a slight problem…

Nobody wrote a GTK binding for Perl 6 yet

So I wrote GTK::Simple on the train here, to
enable me to write the golf assistant

Setting up the UI

Add various controls, and keep them in variables
so we'll be able to refer to them later

my $app = GTK::Simple::App.new(
 title => 'Code Golf Assistant!');

$app.set_content(GTK::Simple::VBox.new(
 my $source = GTK::Simple::TextView.new(),
 my $chars = GTK::Simple::Label.new(
 text => 'Characters: 0'),
 my $elapsed = GTK::Simple::Label.new(),
 my $results = GTK::Simple::TextView.new(),
));

Events are exposed as supplies

UI events are exposed as live supplies (since the
events happen whether they are tapped or not)

This means many things can tap a given event

Here's how we update the character count label

whenever the code in the source textbox changes:

$source.changed.tap({
 $chars.text =
 "Characters: $source.text.chars()";
});

The ticking seconds

Here, we need to be a little careful. It may at first
be tempting to just write:

However, this will probably end very badly

Timers fire in the thread pool, as we saw earlier -
but you should only update a user interface from

the main thread of the application!

Supply.interval(1).tap(-> $secs {
 $elapsed.text = "Elapsed: $secs seconds";
});

Schedulers

Schedulers are at the heart of Perl 6 concurrency

Schedulers are relatively simple from the outside:
you give them work to do, and they make it

happen (for example, ThreadPoolScheduler
schedules work onto a pool of threads)

The GTK::Simple module includes a scheduler,

GTK::Simple::Scheduler, that accepts work,
hooks into the GTK event loop, and runs the work

on the main, user-interface, thread

Safely updating the UI

The schedule_on method takes a scheduler, and
makes sure the next step of the asynchronous

data pipeline executes using it

This means we can ensure that the UI updates are
done safely on the main thread

Supply.interval(1).schedule_on(
 GTK::Simple::Scheduler
).tap(-> $secs {
 $elapsed.text = "Elapsed: $secs seconds";
});

Running the code

Let's start with the simplest thing that could
possibly work, and then deal with its issues

This sucks in two key ways:

It evaluates the code on every single keystroke
and

Evaluates it on the UI thread, freezing up the UI

$source.changed.tap({
 $results.text = (try EVAL .text) // $!.message
});

Waiting for a stable value

Rather than running the code on every single
keystroke, it makes more sense to do it when the

user stops typing for a bit

The unchanged method waits for the source it
taps to have no new data for a certain time

period, and then propagates the latest value -
which here maps to the user stopping typing

$source.changed.unchanged(1).tap({
 $results.text = (try EVAL .text) // $!.message
});

Evaluating the code on another thread

Fraught with danger!

Evaluating the code on another thread

Fraught with danger!

Of course, we need to update the UI on the main
thread - but we already know how to do that

Trickier is dealing with this situation:

Start to evaluate a thing that takes a while
Then evaluate something that runs quickly

Show the result of that latest thing
Then the old, slow thing is done and overwrites it

The start method

The start method schedules a block of code to run
on the thread pool scheduler

It then immediately pushes a supply to whatever

taps it. This means we are now dealing with a
supply of supplies - the inner ones representing

the evaluation of each piece of code!

$source.changed.unchanged(1).start({
 (try EVAL .text) // $!.message
})

The migrate method

A supply of supplies is an asynchronous stream of
asynchronous streams. The migrate method
always taps the latest available stream, and

ignores results from earlier ones - ensuring we
will never overwrite a new result with an old one!

$source.changed.unchanged(1).start({
 (try EVAL .text) // $!.message
}).migrate().schedule_on(
 GTK::Simple::Scheduler
).tap(
 { $results.text = $_ }
);

Entering the runloop

With everything set up, all that remains is to enter
the GTK runloop:

And with that, we've implemented all of the
features for the code golf assistant - in 29 lines!

In those 29 lines we've handled UI events, worked

with time, used multiple threads, handled race
conditions, and provided a responsive UX!

$app.run();

Aside (if time): inside GTK::Simple

I didn't write a single line of C code; everything is
done with the Perl 6 NativeCall module

Here's a simple example:

use NativeCall;

my class GtkWidget is repr('CPointer') { };

sub gtk_widget_show(GtkWidget $widget)
 is native('libgtk-3.so.0')
 {*}

Aside (if time): C callbacks to supplies

has $!changed_supply;
method changed() {
 $!changed_supply //= do {
 my $s = Supply.new;
 g_signal_connect_wd(
 $!gtk_widget, "changed",
 -> $, $ {
 $s.more(self);
 CATCH { default { note $_; } }
 },
 OpaquePointer, 0);
 $s
 }
}

Wrapping up…

Asynchronous things aren't uncommon, and have
been getting increasingly important

Dealing with them is traditionally complicated,
because the mechanisms used compose badly

Reactive programming enables a lot of the
difficult things to be factored out, and also

enables easy composition

"Make the easy asynchronous things easy"

Thank you!

Questions?

You can find the code samples from the talk at
github.com/jnthn/perl6-reactive-samples

If you want to contact me…

Email: jnthn@jnthn.net
Twitter: @jnthnwrthngtn

