
Adventures in
Perl 6 Asynchrony

Jonathan Worthington

My original idea

Extoll the beautiful duality of
iterators and observers

Give lots of little examples,
showing off various features

in relative isolation

But…

Practice beats theory

Last year, the only thing I
could show were isolated
examples. Now we can do
more interesting things…

So, instead…

I'm going to walk you
through a small app I'm
building for my own use

Allows me to show a lot of
async things in context

I like to travel…

…and collect photos…

…and collect photos…

…and collect photos…

I wanted a small tool to…

Categorize images by trip
and places I went

Produce various sizes

Stick them on my server

Make use of the hardware

Even my laptop is multi-core
and hyper-threaded

Should be able to perform
the image resizing in parallel,

using multiple cores

Make use of the network

Work on uploading a few
images at a time

Will just scp them, so really
this means juggling a few

different processes

Ctrl + C, and resume later

Don't always have time to
wait for all the uploading

Want to be able to suspend
it at any point, and have it

able to resume later

Example usage

Setup
./cesta add-journey croatia-2013 "Croatia 2013"
./cesta add-place croatia-2013 zagreb "Zagreb"

Example usage

Setup
./cesta add-journey croatia-2013 "Croatia 2013"
./cesta add-place croatia-2013 zagreb "Zagreb"

Add today's photos.
./cesta add-photos croatia-2013 zagreb ../today

Example usage

Setup
./cesta add-journey croatia-2013 "Croatia 2013"
./cesta add-place croatia-2013 zagreb "Zagreb"

Add today's photos.
./cesta add-photos croatia-2013 zagreb ../today

Maybe review the work, and then set it off...
./cesta worklist
./cesta process

The worklist

JSON file containing the list
of resizes and uploads to do

Each photo added gets an
entry for full size, a large
version, and a thumbnail

Example worklist

[
 {
 "file" : "../today/DSC02864.JPG",
 "output" : "full/croatia-2014-dubrovnik-5.jpg"
 },
 {
 "file" : "../today/DSC02864.JPG",
 "output" : "large/croatia-2014-dubrovnik-5.jpg",
 "max-width" : 700,
 "max-height" : 450
 },
 ...
]

The code: plan of attack

Parallel image resizing

Parallel image uploading

Link the two together

Ctrl + C handling, logging…

Resizing

Farm off the real work to
ImageMagick - which is,

happily, threadsafe

Wrote Image::Magick::Resize
- using Perl 6's NativeCall

Basic resizing

Here's how to use the
module to resize an image (it

handles proportional bits):

my $ir = Resize.new(image => 'large.jpg');
$ir.resize('thumb.jpg',
 max-height => 100,
 max-width => 150);

Resize (or just copy) per
worklist item

sub resize-one($todo) {
 if $todo<max-width> && $todo<max-height> {
 my $ir = Resize.new(image => $todo<file>);
 $ir.resize($todo<output>,
 max-height => $todo<max-height>,
 max-width => $todo<max-width>);
 }
 else {
 copy($todo<file>, $todo<output>);
 }
}

Sequential resizing

Just loop over the worklist
and resize each of the things

sub resize-worker(@worklist) {
 for @worklist -> $todo {
 resize-one($todo);
 }
}

An easy way to parallelize

Here's all we need to change
to use multiple cores

sub resize-worker(@worklist) {
 await do for @worklist -> $todo {
 start { resize-one($todo); }
 }
}

Taking stock

We've just used Perl 6 code
to call a C library over

multiple threads

Not a single explicit thread
or lock in sight!

What is start?

start schedules code on
the thread pool, and returns

a Promise to represent it

A Promise represents some
asynchronous piece of work

What is await?

await takes one or more
Promise objects, and waits
for all of them to complete

// Note: do for works like a map
await do for @worklist -> $todo {
 start { resize-one($todo); }
}

Good enough?

Not quite yet

Would like to control how
many threads work on it

my constant PARALLEL_RESIZE = 4;

Building simple throttling

Keep an "active work" list

my @working;

Building simple throttling

Loop over the worklist

my @working;
for @worklist -> $todo {
 ...
}

Building simple throttling

Push resize Promises…

my @working;
for @worklist -> $todo {
 @working.push(start { resize-one($todo) });
 ...
}

Building simple throttling

…until we hit the limit.

my @working;
for @worklist -> $todo {
 @working.push(start { resize-one($todo) });
 next if @working < PARALLEL_RESIZE;
 ...
}

Building simple throttling

Wait for any to complete…

my @working;
for @worklist -> $todo {
 @working.push(start { resize-one($todo) });
 next if @working < PARALLEL_RESIZE;
 await Promise.anyof(@working);
 ...
}

Building simple throttling

…and filter the completed.

my @working;
for @worklist -> $todo {
 @working.push(start { resize-one($todo) });
 next if @working < PARALLEL_RESIZE;
 await Promise.anyof(@working);
 @working .= grep({ !$_ });
}

Building simple throttling

Or more cutely:

my @working;
for @worklist -> $todo {
 @working.push(start { resize-one($todo) });
 next if @working < PARALLEL_RESIZE;
 await Promise.anyof(@working);
 @working .= grep(!*);
}

Building simple throttling

Wait for last ones to be done.

my @working;
for @worklist -> $todo {
 @working.push(start { resize-one($todo) });
 next if @working < PARALLEL_RESIZE;
 await Promise.anyof(@working);
 @working .= grep(!*);
}
await Promise.allof(@working);

Promise combinators

anyof returns a Promise that
is kept once one or more of the

specified Promises are kept

For allof, all of the specified
Promises must be kept

Promise = 1 async value

Any time we want to
communicate a single

asynchronously produced
value or event safely, we

can use Promises.

A termination Promise

The need to stop resizing
images can be communicated

easily using a Promise.

We can simply poll it now and
then to see if it was kept…

A termination Promise
sub resize-worker(@worklist, $kill) {
 my @working;
 for @worklist -> $todo {
 @working.push(start {
 resize-one($todo, $output);
 });
 next if @working < PARALLEL_RESIZE;
 await Promise.anyof(@working, $kill);
 @working .= grep(!*);
 last if $kill;
 }
 await Promise.allof(@working);
}

The uploading

So far, we've seen Promises
represent computation,

cancellation, and combination.

Turns out we can also use them
for asynchronous processes.

Simple async processes

Here's the simplest possible
thing: spawn a process and

await its exit.
my $proc = Proc::Async.new:
 path => 'pscp',
 args => [$file, "$server-path/$file"];
await $proc.start;

Keep process and Promise

So we can kill it if needed, we'll
keep the process and exit

Promise together
sub start-upload($file) {
 my $proc = Proc::Async.new:
 path => 'pscp',
 args => [$file, "$server-path/$file"];
 return { :$proc, :$file, done => $proc.start };
}

Upload worker

The upload worker will return
the things it successfully

uploaded
sub upload-worker(@files) {
 my @working;
 my @done;
 ...
 return @done;
}

sub upload-worker(@files) {
 my @working;
 my @done;
 for @files -> $file {
 ...
 }
 ...
 return @done;
}

Upload worker

We'll go over the files to do…

for @files -> $file {
 @working.push(start-upload($file));
 next if @working < PARALLEL_UPLOAD;
 await Promise.anyof(@working.map(*.<done>));
 process-completed-uploads(@working, @done);
}

Upload worker

Inside the loop, we do much as
we did with the resize worker

sub upload-worker($input) {
 my @working;
 my @done;
 ...
 await Promise.allof(@working.map(*.<done>));
 process-completed-uploads(@working, @done);
 return @done;
}

Upload worker

After the loop, wait for all the
uploads to get done

Upload worker in full

sub upload-worker($input) {
 my @working;
 my @done;
 for @files -> $file {
 @working.push(start-upload($file));
 next if @working < PARALLEL_UPLOAD;
 await Promise.anyof(@working.map(*.<done>));
 process-completed-uploads(@working, @done);
 }
 await Promise.allof(@working.map(*.<done>));
 process-completed-uploads(@working, @done);
 return @done;
}

Processing completed uploads
sub process-completed-uploads(@working, @done) {
 @working .= grep({
 if .<done> {
 my $file = .<file>;
 if .<done>.status == Kept &&
 .<done>.result.exit == 0 {
 @done.push($file);
 }
 False
 }
 else {
 True
 }
 });
}

Uploads and $kill

Changes in the loop:
for @files -> $file {
 last if $kill;
 @working.push(start-upload($file));
 next if @working < PARALLEL_UPLOAD;
 await Promise.anyof(@working.map(*.<done>),
 $kill);
 process-completed-uploads(@working, @done);
}

Uploads and $kill

Changes after the loop:
await Promise.anyof(
 $kill,
 Promise.allof(@working.map(*.<done>)));
if $kill {
 .<proc>.kill() for @working;
}
process-completed-uploads(@working, @done);
return @done;

Putting the pieces together

We now have a resizing stage
and an uploading stage

Next, we need to wire them
together in a safe way

Use a Channel

Make a Channel, and then
pass it to each of them

sub process(@worklist) {
 my $kill = Promise.new;
 my $upload = Channel.new;
 start {
 resize-worker(@worklist, $upload, $kill);
 }
 upload-worker($upload, $log, $kill);
}

Send the files to upload

sub resize-worker(@input, $output, $kill) {
 my @working;
 for @input -> $todo {
 @working.push(start {
 resize-one($todo, $output);
 $output.send($todo<output>);
 });
 ...
 }
 await Promise.allof(@working);
 $output.close();
}

Receive the files to upload

Iterate the channel like a list,
until the sender closes it

sub upload-worker($input, $kill) {
 my @working;
 my @done;
 for $input.list -> $file {
 ...
 }
 ...
}

About Channels

At their heart, a concurrent
queue data structure

Ideal for wiring together larger
stages of a system; less good

for fine-grained things

Reporting progress

Want a thread-safe, loosely
coupled mechanism for
reporting back progress

Really, we have a stream of
asynchronous values

Introducing Supply

A Supply is a little like a
Promise in that you can push

values or events out in an
asynchronous fashion.

However, many values can be
pushed over time.

Logging via. a Supply

Create it and pass it
sub process(@worklist) {
 my $log = Supply.new;
 my $kill = Promise.new;
 my $upload = Channel.new;
 start {
 resize-worker(@worklist, $upload, $log,
 $kill);
 }
 upload-worker($upload, $log, $kill);
}

Logging via. a Supply

Simply say each value
sub process(@worklist) {
 my $log = Supply.new;
 $log.act(&say);
 my $kill = Promise.new;
 my $upload = Channel.new;
 start {
 resize-worker(@worklist, $upload, $log,
 $kill);
 }
 upload-worker($upload, $log, $kill);
}

Logging via. a Supply

Then, code that wants to log
something just delivers the

value using the Supply

$log.more("Resized $todo<output>");

$log.more("Uploaded $file");

We Supply all sorts!

Anything that provides a
sequence of asynchronous

values is exposed as a Supply

Let's consider how we handle
SIGINT (from Ctrl + C)

Supporting termination

All we need to do, upon
SIGINT, is to keep the $kill

Promise

my $kill = Promise.new;
signal(SIGINT).act({
 $kill.keep(True) unless $kill;
 $log.more('Terminating...');
});

The command line interface

Just need to write a MAIN!
multi MAIN('process') {
 my @worklist :=
 (try from-json slurp "db/worklist.json") // [];
 whinge("Nothing to do") unless @worklist;

 my %completed-ids = process(@worklist).map(* => True);
 spurt "db/worklist.json", to-json
 @worklist.grep({ !%completed-ids{.<output>} });

 say "Completed";
}

MAIN subroutines

The rest look similar…
multi MAIN('add-journey', $journey-id, $title) {
 ...
}
multi MAIN('add-photos', $journey-id, $place-id,
 $photo-dir) {
 ...
}
multi MAIN('worklist') {
 ...
}

MAIN subroutines

…and Perl 6 even introspects
them to generate usage!

$./cesta
Usage:
 cesta.p6 add-journey <journey-id> <title>
 cesta.p6 add-place <journey-id> <place-id> <title>
 cesta.p6 add-photos <journey-id> <place-id> <photo-dir>
 cesta.p6 journeys
 cesta.p6 worklist
 cesta.p6 process

We've built something that…

Does CPU-bound work over
multiple threads, juggles

multiple processes, passes
data along a thread-safe

pipeline, handles signals, and
supports cancellation!

Together with the CLI…

This entire application
weighs in at 176 lines

(Plus a single, pure Perl 6
module to resize, at 65 lines)

One more thing: a GUI app

It's also feasible to expose UI
events as supplies

This can allow for some quite
powerful things to be done

with very little code

Code golf assistant

Type code here
Char count updates

automatically

Run code in background
and show result

Show how much
time I've wasted

Set up the UI

Just create a few controls
my $app = GTK::Simple::App.new(
 title => 'Code Golf Assistant!');

$app.set_content(GTK::Simple::VBox.new(
 my $source = GTK::Simple::TextView.new(),
 my $chars = GTK::Simple::Label.new(
 text => 'Characters: 0'),
 my $elapsed = GTK::Simple::Label.new(),
 my $results = GTK::Simple::TextView.new(),
));

Events are supplies

Can easily tap into the
asynchronous event stream

$source.changed.tap({
 $chars.text =
 "Characters: $source.text.chars()";
});

Time is a Supply

Get a Supply that pushes an
incrementing value every
second, tap it, update UI.

Supply.interval(1).tap(-> $secs {
 $elapsed.text = "Elapsed: $secs seconds";
});

But wait!

Timer ticks might not come
on the UI thread! So we must

tap it on the UI thread:

Supply.interval(1).schedule_on(
 GTK::Simple::Scheduler
).tap(-> $secs {
 $elapsed.text = "Elapsed: $secs seconds";
});

Running the code

The easiest way to do it is:

However, this will evaluate
on every keystroke and lock

up the user interface! 

$source.changed.tap({
 $results.text = (try EVAL .text) // $!.message
});

Running the code

Thankfully, there is a way to
wait for the value to have

been stable for a time period

$source.changed.stable(1).tap({
 $results.text = (try EVAL .text) // $!.message
});

Running the code

Then, we can kick it off to
run on a background thread

This is fine, but now different
evaluations may race!

$source.changed.stable(1).start({
 (try EVAL .text) // $!.message
})

Running the code

From start, we get a
Supply of Supply. The

migrate method only pays
attention to the latest one.

$source.changed.stable(1).start({
 (try EVAL .text) // $!.message
}).migrate()

Running the code

Finally, we punt the result to
the UI thread and show it:

$source.changed.stable(1).start({
 (try EVAL .text) // $!.message
}).migrate().schedule_on(
 GTK::Simple::Scheduler
).tap(
 { $results.text = $_ }
);

And there we have it!

A UI application, handling UI
events, doing time-based

updates, running code on a
background thread, and

showing the results…

And there we have it!

A UI application, handling UI
events, doing time-based

updates, running code on a
background thread, and

showing the results…
…in 28 lines of code!

Status

All you've seen today is
working code

Pretty solid support on JVM;
MoarVM provides the

features, and we're polishing

Composable mechanisms

When code uses scalars,
arrays, etc. we have common
data structures, and are able

to compose things. We're
making it that way for

asynchrony too.

Asynchrony matters!

By putting Promise and
Supply in the language,

we're acknowledging that
asynchronous data should be

a first class citizen in the
modern computing world.

Questions?

