
Rakudo Perl 6 and MoarVM
Performance Advances

Jonathan Worthington

Hi. I'm Jonathan.

Hi. I'm Jonathan.

> "Jonathan".subst(/<[aeiou]>/, '', :g).lc
jnthn

My Goal:

Eliminate the implementation
issues that stand in the way of

greatly increased Perl 6 adoption.

Software development

More about learning than
about building.

So I value...

Speed of "idea running code"
and

Ease of refactoring, to
incorporate new learning

Which are Perl values

Whipuptitude
and

Manipulexity

And Perl 6 gives me these things
to an even greater degree

Perl 6: my learningest project

"Torment the implementers for the
sake of the users" isn't a joke!

In my first couple of years, I learned

rather a lot about how not to
implement Perl 6.

But nowadays...

Vast majority of features in place
(little left that isn't "post-6.0 wish list")

Solid compiler architecture
(third time's a charm)

Lots of tests, growing ecosystem
(tells us quickly when we broke something)

Time for performance work

Optimizing the wrong design not
only wastes time, it makes it harder

to work towards the right one.

Now we had a design we were
happy with, and performance being
a real adoption blocker, it was time.

2013.08 - 2014.08

In this session, I'll look at the
improvements made relative to

YAPC::Europe last year.

There will be code. There will be
graphs. There will be computer
science. There will be...a reveal.

Rakudo Perl 6 Architecture

Rakudo Perl 6 Architecture

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Rakudo Perl 6 Architecture

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Grammar
+

Actions

Abstract Syntax Tree + Objects

Rakudo Perl 6 Architecture

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Grammar
+

Actions

Abstract Syntax Tree + Objects

Perl 6 Optimizer

Improved AST + Same Objects

Rakudo Perl 6 Architecture

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Grammar
+

Actions

Abstract Syntax Tree + Objects

Perl 6 Optimizer

Improved AST + Same Objects

MoarVM
Backend

MAST MoarVM
Bytecode

JVM
Backend

JAST JVM
Bytecode

Parrot
Backend

PIRT PIR
(Parrot IL)

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Grammar
+

Actions

Abstract Syntax Tree + Objects

Perl 6 Optimizer

Improved AST + Same Objects

MoarVM
Backend

MAST MoarVM
Bytecode

JVM
Backend

JAST JVM
Bytecode

Parrot
Backend

PIRT PIR
(Parrot IL)

A year ago...

Just about everybody using
Rakudo Perl 6 was using the
Parrot backend; the others

were in their infancy

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Grammar
+

Actions

Abstract Syntax Tree + Objects

Perl 6 Optimizer

Improved AST + Same Objects

Today

Most run on MoarVM, some
on JVM, a few still on Parrot

MoarVM
Backend

MAST MoarVM
Bytecode

JVM
Backend

JAST JVM
Bytecode

Parrot
Backend

PIRT PIR
(Parrot IL)

say "Badger, " x 8,
 "Mushroom, " x 2,
 "SNAKE! " x 2;

Perl 6 Source

Grammar
+

Actions

Abstract Syntax Tree + Objects

Perl 6 Optimizer

Improved AST + Same Objects

Today

Most run on MoarVM, some
on JVM, a few still on Parrot

MoarVM
Backend

MAST MoarVM
Bytecode

JVM
Backend

JAST JVM
Bytecode

Parrot
Backend

PIRT PIR
(Parrot IL)

CORE.setting

The Perl 6 built-ins are mostly
written in Perl 6, with some

calls down to (VM) primitives

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

NQP (Not Quite Perl 6)

A small, easier-to-optimize,
Perl 6 subset

Nearly all of Rakudo is NQP
code (except CORE.setting)

NQP Architecture

my $answer := 42;
say($answer);
nqp::exit(0);

NQP Source

NQP Grammar
+

NQP Actions

Abstract Syntax Tree + Objects

NQP Optimizer

Improved AST + Same Objects

MoarVM
Backend

MAST MoarVM
Bytecode

JVM
Backend

JAST JVM
Bytecode

Parrot
Backend

PIRT PIR
(Parrot IL)

NQP compiler + same toolchain

my $answer := 42;
say($answer);
nqp::exit(0);

NQP Source

NQP Grammar
+

NQP Actions

Abstract Syntax Tree + Objects

NQP Optimizer

Improved AST + Same Objects

MoarVM
Backend

MAST MoarVM
Bytecode

JVM
Backend

JAST JVM
Bytecode

Parrot
Backend

PIRT PIR
(Parrot IL)

Where to improve things?

Took a holistic view of the
whole pipeline, from source

code through to runtime

 Earlier stages can help later
ones do their job better

We improved all the things!

• More transformations, so Perl 6
programs run faster

Rakudo Optimizer

• More transformations, so NQP (and
thus the Perl 6 compiler) run faster

NQP Optimizer

• Improved it, so we parse NQP, Perl 6,
and user's grammars more cheaply

Grammar Engine

• Made AST nodes lighter and faster;
improved quality of generated code

Toolchain
(AST and code-gen)

• Improved many built-ins, so programs
using them will run faster

CORE.setting

• Made everything running on it - all
the above - run faster

MoarVM

Today we'll focus in on...

• More transformations, so Perl 6
programs run faster

Rakudo Optimizer

• More transformations, so NQP (and
thus the Perl 6 compiler) run faster

NQP Optimizer

• Improved it, so we parse NQP, Perl 6,
and user's grammars more cheaply

Grammar Engine

• Made AST nodes lighter and faster;
improved quality of generated code

Toolchain
(AST and code-gen)

• Improved many built-ins, so programs
using them will run faster

CORE.setting

• Made everything running on it - all
the above - run faster

MoarVM

Rakudo optimizer examples

Turn range iterations into
native integer loops

for 1..100000 {
 do_it()
}

my int $i = 0;
my $body = { do_it() };
while $i < 100000 {
 $body($i);
 $i = $i + 1;
}

Before After

Rakudo optimizer examples

Devirtualize private method
calls, resolving them at

compile time (and whining
about missing ones!)

self!guts_thingy(42); <A CONSTANT>(self, 42);

Before After

Rakudo optimizer examples

Routines contain more symbols
than meets the eye...

method done() {
 $!winner || $!draw
}

method done(*%_) {
 my $_; # Topic
 my $!; # Error
 my $/; # Match
 $!winner || $!draw
}

You write... But really it's...

Rakudo optimizer examples

We can statically see we'll
never use the magicals...

method done(*%_) {
 my $_; # Topic
 my $!; # Error
 my $/; # Match
 $!winner || $!draw
}

method done(*%_) {
 my $_; # Topic
 my $!; # Error
 my $/; # Match
 $!winner || $!draw
}

Before After

Rakudo optimizer examples

...and %_ will never be used, so
we can make it anonymous

method done(*%_) {
 my $_; # Topic
 my $!; # Error
 my $/; # Match
 $!winner || $!draw
}

method done(*%_) {
 my $_; # Topic
 my $!; # Error
 my $/; # Match
 $!winner || $!draw
}

Before After

Rakudo optimizer examples

Furthermore, the self lexical
holding the invocant is lowered

to a normal local variable

This is a little faster to access,
and easier on VM optimizers

Rakudo optimizer examples

As a final example, we also
desugar simple junctions

if $a < $lim1 & $lim2 {
 ...
}

TMP = $a;
if TMP < $lim1
&& TMP < $lim2 {
 ...
}

Before After

Note: these are tree transforms

I've used the program text to
illustrate transformations

But in reality, we do them at
the AST level, which is far more

robust and straightforward

Note: these are tree transforms

I've used the program text to
illustrate transformations

But in reality, we do them at
the AST level, which is far more

robust and straightforward

Hi! I'm a
source filter!

MoarVM

Started out as a naive
interpreter of bytecode

0100111101001
1010100011101
0000100100010
1010001010101
001000100001

MoarVM
Bytecode

(from NQP
or Perl 6)

Interpreter

(Huge Switch
Statement /
Computed

Goto)

Stuff
Happens

Interpretation: pretty easy

Validate bytecode to make sure
ops and operands are valid on

first call - and then just run!
OP(add_i):
 GET_REG(cur_op, 0).i64 = GET_REG(cur_op, 2).i64 +
 GET_REG(cur_op, 4).i64;
 cur_op += 6;
 goto NEXT;

A bytecode deep dive

Let's start out by considering a
simple Perl 6 builtin, the prefix

++ operation on an Int:

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

Compiling this code
produces 23

instructions. Let's
take it apart...

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

// Ensure we've 1..1 args
checkarity 1, 1

// Grab the first arg into r1
param_rp_o r1, 0

// Coerce any NQP/other language
// values into Perl 6 types
hllize r4, r1
set r1, r4

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

// Grab value out of Scalar
decont r4, r1

// Grab type; de-Scalar if needed
wval r5, 1, 34
decont r3, r5

// Ensure arg is an Int
istype r6, r4, r3
assertparamcheck r6

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

// Also ensure it's not a type
// object (Perl 6 equivalent of
// undef, but typed)
decont r3, r1
isconcrete r6, r3
assertparamcheck r6

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

// Put arg into r0. Rakudo's
// optimizer lowered $a to a
// local, or we'd see a bindlex.
set r0, r1

// Ensure there's no named args.
paramnamesused

// Swallow any dispatch iterator.
takedispatcher r2

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

// nqp::decont($a)
decont r3, r0

// 1 and Int objects, taken
// from constant table
wval r4, 0, 79
wval r5, 1, 34

// Actually do the addition
add_I r5, r3, r4, r5

A bytecode deep dive
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

multi prefix:<++>(Int:D $a is rw) {
 $a = nqp::add_I(nqp::decont($a), 1, Int);
}

// Assign result to $a, with a
// superstitious decont.
decont r4, r5
assign r0, r4

// Decont return value (legit)
p6decontrv r0, r0

// Return it
return_o r0

"No wonder it's slow!"

We could find a few ways to
improve the generated code

However, they'd mostly kill off
(cheap) data shuffling, not

(more costly) checks

Enter Spesh

Spesh is the name for
MoarVM's "type specializer"

 (Why? If we called it "spec"
everyone would say it wrong,
or try to Google "Perl 6 spec")

Spesh seeks out hot
code, sees what kinds

of arguments it is
given, and makes a
specialized version.

Single Static Assignment

The first thing spesh does is get
the code in SSA form, by giving

registers "versions"

checkarity 1, 1
param_rp_o r1(1), 0
hllize r4(1), r1(1)
set r1(2), r4(1)

checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4

Specialization walkthrough

Let's consider the case where
prefix:<++> is called with a

single argument: a Scalar
container holding an Int

How will the code change?

Specialize by callsite
checkarity 1, 1
param_rp_o r1(1), 0
hllize r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
decont r3(1), r5(1)
istype r6(1), r4(2), r3(1)
assertparamcheck r6(1)
decont r3(2), r1(2)
isconcrete r6(2), r3(2)
assertparamcheck r6(2)
set r0(1), r1(2)
paramnamesused

We're doing a
specialization
for a callsite
with a single
object arg;

toss checks!

Specialize by callsite
param_rp_o r1(1), 0
sp_getarg_o r1(1), 0
hllize r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
decont r3(1), r5(1)
istype r6(1), r4(2), r3(1)
assertparamcheck r6(1)
decont r3(2), r1(2)
isconcrete r6(2), r3(2)
assertparamcheck r6(2)
set r0(1), r1(2)

We know it's
an object

coming in, so
use a cheaper
op that skips
boxing check.

Specialize by HLL
sp_getarg_o r1(1), 0
hllize r4(1), r1(1)
set r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
decont r3(1), r5(1)
istype r6(1), r4(2), r3(1)
assertparamcheck r6(1)
decont r3(2), r1(2)
isconcrete r6(2), r3(2)
assertparamcheck r6(2)
set r0(1), r1(2)

We know the
incoming arg

is a Perl 6
type, so we

can avoid the
HLL coercion.

Specialize by constant
sp_getarg_o r1(1), 0
set r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
decont r3(1), r5(1)
set r3(1), r5(1)
istype r6(1), r4(2), r3(1)
assertparamcheck r6(1)
decont r3(2), r1(2)
isconcrete r6(2), r3(2)
assertparamcheck r6(2)
set r0(1), r1(2)

This wval (a
constant) is

known not to
be in a Scalar,
so we can toss

the decont.

Specialize by type
sp_getarg_o r1(1), 0
set r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
set r3(1), r5(1)
istype r6(1), r4(2), r3(1)
iconst_64 r6(1), 1
assertparamcheck r6(1)
decont r3(2), r1(2)
isconcrete r6(2), r3(2)
assertparamcheck r6(2)
set r0(1), r1(2)

We know r4(2)
is an Int (from
the arg), and
r3(1) is Int, so

the istype
must be true.

Specialize by definedness
sp_getarg_o r1(1), 0
set r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
set r3(1), r5(1)
iconst_64 r6(1), 1
assertparamcheck r6(1)
decont r3(2), r1(2)
isconcrete r6(2), r3(2)
iconst_64 r6(2), 1
assertparamcheck r6(2)
set r0(1), r1(2)

We're also
specializing for
a defined Int,

therefore
isconcrete

must be true.

Passed assertions redundant
sp_getarg_o r1(1), 0
set r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
set r3(1), r5(1)
iconst_64 r6(1), 1
assertparamcheck r6(1)
decont r3(2), r1(2)
iconst_64 r6(2), 1
assertparamcheck r6(2)
set r0(1), r1(2)

The assertion
operations do

nothing if
given a true

value - so they
can go.

Dead code elimination
sp_getarg_o r1(1), 0
set r4(1), r1(1)
set r1(2), r4(1)
decont r4(2), r1(2)
wval r5(1), 1, 34
set r3(1), r5(1)
iconst_64 r6(1), 1
decont r3(2), r1(2)
iconst_64 r6(2), 1
set r0(1), r1(2)

We now have
a number of

unused values,
and so can

delete the ops
that set them.

After some more opts...
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

sp_getarg_o r1, 0
set r4, r1
set r1, r4
set r0, r1
takedispatcher r2
sp_p6oget_o r3, r0, 16
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
set r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

Aside: if spesh were perfect...
checkarity 1, 1
param_rp_o r1, 0
hllize r4, r1
set r1, r4
decont r4, r1
wval r5, 1, 34
decont r3, r5
istype r6, r4, r3
assertparamcheck r6
decont r3, r1
isconcrete r6, r3
assertparamcheck r6
set r0, r1
paramnamesused
takedispatcher r2
decont r3, r0
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
decont r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

sp_getarg_o r1, 0
set r4, r1
set r1, r4
set r0, r1
takedispatcher r2
sp_p6oget_o r3, r0, 16
wval r4, 0, 79
wval r5, 1, 34
add_I r5, r3, r4, r5
set r4, r5
assign r0, r4
p6decontrv r0, r0
return_o r0

sp_getarg_o r0, 0
takedispatcher r2
sp_p6oget_o r3, r0, 16
wval r4, 0, 79
add_I r4, r3, r4, r4
sp_p6bind_o r0, 16, r4
return_o r4

A real world...benchmark!

Consider the use of ++ in:

Naively, we must check that
the specialized version we
made is valid per call.

my $i = 0; while ++$i <= 1000000 { }

Specializing the call

// Look up prefix:<++>
const_s r1(6), lits(&prefix:<++>)
getlexstatic_o r5(6), r1(6)
decont r8(2), r5(6)

// Fetch $x
getlex r7(2), lex(idx=0,outers=0)

// Call it
prepargs callsite(...)
arg_o liti16(0), r7(2)
invoke_o r7(3), r8(2)

Here's
the

bytecode
we start
off with.

Specializing the call

// Look up prefix:<++>
const_s r1(6), lits(&prefix:<++>)
getlexstatic_o r5(6), r1(6)
decont r8(2), r5(6)
sp_getspeshslot r5(6), sslot(7)

// Fetch $x
getlex r7(2), lex(idx=0,outers=0)

// Call it
prepargs callsite(...)
arg_o liti16(0), r7(2)
invoke_o r7(3), r8(2)

The callee
never

changes,
so we can
cache it.

Specializing the call

// Look up prefix:<++>
sp_getspeshslot r5(6), sslot(7)

// Fetch $x
getlex r7(2), lex(idx=0,outers=0)

// Call it
prepargs callsite(...)
arg_o liti16(0), r7(2)
invoke_o r7(3), r8(2)
sp_fastinvoke_o r7(3), r8(2), 0

Then, we
invoke our

special
prefix ++
directly!

Inlining

In reality, we go a step further.

Since the prefix:<++> code is
quite small, we simply inline it
into the calling code - meaning
we avoid making call frames!

But wait...

If the whole program is this:

And spesh looks for hot code
by counting calls, how do we

ever optimize the loop?

my $i = 0; while ++$i <= 1000000 { }

On Stack Replacement

If we detect a loop is hot, we:

Pause it
Build optimized code

Resize frame for any inlines
Resume in the optimized code

But we're still interpreting!

By now, we've got much better
code for the interpreter to zip
through. However, we're still
interpreting it - which comes
with a good bit of overhead!

Enter JIT compilation!

Thanks to an outstanding
Google Summer of Code

project, we can now turn much
output of spesh into x64

machine code!

Some timings

my $i = 0; while ++$i <= 100000000 { }

0 20 40 60 80 100 120

Spesh + Inline + JIT

Spesh + Inline

Spesh

Naive Interpretation

All this seems so magical!

Perl 6 needs a smart runtime.
The design relies on inlining to
get acceptable performance.

But how can we know what is
happening with our code?

Today, I'm happy to reveal...

...a MoarVM spesh-aware,
JIT-aware, profiler!

Using the profiler

To profile runtime (normal):

Or compile time (for NQP and
Rakudo developers, mostly):

perl6 --profile script.p6

perl6 --profile-compile script.p6

Results

Let's finish up with a look at
some graphs, comparing:

Perl 5 v20
Rakudo on Parrot 2013.08

Rakudo on MoarVM 2014.08

perl6-bench

The following graphs are
produced by the excellent
perl6-bench tool and suite

Not something I've worked on
(so somewhat impartial)

Great news: natives

Awesome, thanks to JIT. Here, we're 14x faster
than Perl 5, and 355x faster than 2013.08!

Good news: natives

Native loop and concatenation is about even
with Perl 5, and 45x faster than 2013.08.

Good news: trim

Our trim built-in matches the usual Perl 5
idiom, and is 10x faster than 2013.08.

Great news: rationals

Our Rat (rational number) support is 6x faster
than Perl 5, and 9x faster than 2013.08.

OK news: non-native loops

Perl 5 is 4x faster here. That's a big step
forward; Perl 5 is 263x faster than 2013.08!

Aside: why is this hard?

Why is this hard to make fast in Perl 6?

Firstly, because Int has big integer semantics.
Secondly, because Int is an immutable, heap-
allocated object by spec - and we do it that

way. The silver lining: in the time Perl 5 does 4
++s, we can allocate and GC an object!

my $i = 0; while ++$i <= 100000000 { }

OK news: hashes

Perl 5 is 3x faster for this one. But again, we
improved: it was 57x faster than 2013.08.

Bad news: arrays

2013.08 was about 300x slower than Perl 5.
2014.08 is still about 13x slower.

More bad array news: push

2013.08 was about 3,600x slower than Perl 5.
2014.08 is 34x slower. Better. But still sucks.

What's so hard about arrays?

Perl 6 supports lazy lists.

That's great in that we can use normal for
loops to do I/O.

However, we're still bad at pushing eager

context down into list processing logic.
Thankfully, this is now receiving attention.

Steady improvement

This shows all releases since January on a 2D
array indexing benchmark; we got 20x faster.

Algorithmic improvement

Sometimes, the improvement is algorithmic, as
shown by the shapes here.

Overall...

We've made vast steps forward with Perl 6
performance in the last year

Much less likely to be an adoption barrier than

a year ago; it depends how performance-
sensitive the work you're doing is

Some strong areas, some weak ones

The future looks good

MoarVM, with its spesh and JIT, are enabling
us to perform increasingly sophisticated

dynamic optimization of code

perl6-becnh provides essential feedback

Now, we have a whole new treasure trove of
information to open from the profiler!

Not just performance

It's been a year of advances on many other
fronts for the Perl 6 project too:

Modules, the built-ins, documentation, JVM

support, Pod, dozens of bugs fixed...

Come to my Sunday session to see what we've
been doing with asynchrony and parallelism!

Questions?

