
Getting beyond
static vs. dynamic

Jonathan Worthington

Hi.
I'm Jonathan.

I'm a polyglot
programmer.

In the last year, I've
delivered code in...

Perl 6 C

Perl 5 C#

Python Java

JavaScript

...many of them in a
consulting context...

Perl 6 C

Perl 5 C#

Python Java

JavaScript

...some we may call
static, others dynamic

Perl 6 C

Perl 5 C#

Python Java

JavaScript

The benefits and
drawbacks have been

debated plenty...

...and I've felt the pain
and pleasure of both
"kinds of language".

I'm not much into
debating which is "best".

I would, however, quite
like to be able to have
my cake and eat it.

C#
class Program
{
 static void Main(string[] args)
 {
 var morning = "9am-12pm";
 Console.WriteLine("Opening hours:");
 Console.WriteLine(moroning);
 }
}

C#, etc.
class Program
{
 static void Main(string[] args)
 {
 var morning = "9am-12pm";
 Console.WriteLine("Opening hours:");
 Console.WriteLine(moroning);
 }
}

The name 'moroning' does not exist in the current
context
 -- The C# compiler

Python, Ruby, etc.
morning = "9am-12pm"
print("Opening hours:")
print(moroning)

morning = "9am-12pm"
puts "Opening times:"
puts moroning

Python, Ruby, etc.
morning = "9am-12pm"
print("Opening hours:")
print(moroning)

morning = "9am-12pm"
puts "Opening times:"
puts moroning

Opening hours:
Traceback (most recent call last):
 File "python", line 3, in <module>
NameError: name 'moroning' is not defined

Opening times:
undefined local variable or method `moroning' for
#<Context:0x00000002778f88>
(repl):3:in `initialize'

Perl 6
my $morning = "9am-12pm";
say "Opening hours:";
say $moroning;

Perl 6
my $morning = "9am-12pm";
say "Opening hours:";
say $moroning;

===SORRY!===
Variable '$moroning' is not declared. Did you
mean '$morning'?
at x.p6:3
------> say $moroning⏏;

Perl 6

The compiler says sorry for
your moronic typo!

my $morning = "9am-12pm";
say "Opening hours:";
say $moroning;

===SORRY!===
Variable '$moroning' is not declared. Did you
mean '$morning'?
at x.p6:3
------> say $moroning⏏;

Perl 6

And it suggests what you
probably meant to type...

my $morning = "9am-12pm";
say "Opening hours:";
say $moroning;

===SORRY!===
Variable '$moroning' is not declared. Did you
mean '$morning'?
at x.p6:3
------> say $moroning⏏;

Perl 6

...and points out precisely
where the problem is.

my $morning = "9am-12pm";
say "Opening hours:";
say $moroning;

===SORRY!===
Variable '$moroning' is not declared. Did you
mean '$morning'?
at x.p6:3
------> say $moroning⏏;

In Perl 6, we've thought
carefully about what it's

possible to know at
compile time...

...and what things should
be left unresolved until

runtime...

...and made sure there are
"escape valves" for the

compile-time things.

Perl 6

❤
Lexical Scoping

Lexical scopes = region
within curly braces

Variables are, by default,

declared and resolved lexically
 we know what is available

my @readings = load-and-parse('2015.01-data');
if @readings {
 my $sum = [+] @readings;
 my $average = $sum / @readings;
 say "Sum: $sum, Average: $average";
}

Subroutines

Subs and calls to them are also
lexically scoped by default

sub abbreviate($text, $chars) {
 $text.chars > $chars
 ?? $text.substr(0, $chars) ~ "..."
 !! $text
}
say abreviate("Long string is really long", 10);

===SORRY!===
Undeclared routine:
 abreviate used at line 6. Did you mean
 'abbreviate'?

Subroutines

Compiler knows what you call,
so can check the arguments

sub abbreviate($text, $chars) {
 $text.chars > $chars
 ?? $text.substr(0, $chars) ~ "..."
 !! $text
}
say abbreviate("Long string is really long");

===SORRY!===
Calling 'abbreviate' will never work with
argument types (str)
 Expected: :(Any $text, Any $chars)

Subroutines

It can even do some basic type
analysis on the arguments

sub abbreviate(Str $text, Int $chars) {
 $text.chars > $chars
 ?? $text.substr(0, $chars) ~ "..."
 !! $text
}
say abbreviate(10, "Long string is really long");

===SORRY!===
Calling 'abbreviate' will never work with
argument types (Int, Str)
 Expected: :(Str $text, Int $chars)

But it ain't just scopes...

The other critical piece of the
puzzle is that declarations are

made at BEGIN time

That is to say, they come into
being as the program is parsed

 my $sum = [+] @readings;

Compile-time
my $sum

Register the variable as a

known name in the current
lexical scope

Note that call frames (aka
invocation records) for the

current scope need space to
store the variable

Runtime
$sum = [+] @readings

Each time the scope is

entered, storage is
allocated for its lexicals

The assignment runs at its
normal program location,
as would be expected by

the programmer

A historical aside…

The ignorance curve

Time

Ignorance

The ignorance curve

Time

Ignorance

The ignorance curve

Time

Ignorance Robust compile-time
/ runtime boundary

handling is key to Perl
6 implementation

Classes

Also declarations, and so
come into being during

compile time

Provides a number of
interesting opportunities

Method calls

Always late-bound - that is,
resolved at runtime

It's for the receiving object
to decide how to dispatch
and execute the method

Missing method =
runtime error

class Act {
 has $.play;
 has $.number;
 has $.minutes;
}

my $act4 = Act.new(
 play => 'La Traviata', number => 4,
 minutes => 25);
say $act4.description;

No such method 'description' for invocant of type
'Act'
 in block <unit> at y.p6:9

Handling missing methods
class Html {
 method FALLBACK($tag, *@kids, *%attrs) {
 my $kids-str = @kids.join('');
 my $attr-str = %attrs.fmt(' %s="%s"', '');
 "<$tag" ~ $attr-str ~ ">" ~ $kids-str ~ "</$tag>"
 }
}

say Html.p(
 'Omg, ',
 Html.a('a link', href => 'http://perl6.org/'),
 '!'
);

<p>Omg, a link!</p>

Whose language?

Lexical
=

Your language

Method call
=

The object's language

Whose language?

Lexical
=

Your language

Method call
=

The object's language

Whose language?

Lexical
=

Your language

Method call
=

The object's language

Attributes
class War {
 has $!start-year;
 has $!end-year;

 method fought-in($year) {
 $year >= $!start-yer && $year <= $!end-year
 }
}

Attributes
class War {
 has $!start-year;
 has $!end-year;

 method fought-in($year) {
 $year >= $!start-yer && $year <= $!end-year
 }
}

===SORRY!===
Attribute $!start-yer not declared in class War
at x.p6:9

Attributes
class War {
 has $!start-year;
 has $!end-year;

 method fought-in($year) {
 $year >= $!start-year && $year <= $end-year
 }
}

Attributes
class War {
 has $!start-year;
 has $!end-year;

 method fought-in($year) {
 $year >= $!start-year && $year <= $end-year
 }
}

===SORRY!===
Variable '$end-year' is not declared. Did you mean
'$!end-year'?
at x.p6:6
------> $!start-year && $year <= $end-year⏏<EOL>

Private methods

Private methods are not
virtual, and therefore...

class War {
 has $!start-year;
 has $!end-year;

 method fought-in($year) {
 $year ~~ self!dates()
 }

 method !date-range() {
 $!start-year..$!end-year
 }
}

Private methods
class War {
 has $!start-year;
 has $!end-year;

 method fought-in($year) {
 $year ~~ self!dates()
 }

 method !date-range() {
 $!start-year..$!end-year
 }
}

===SORRY!===
No such private method 'dates' for invocant of type
'War'
at x.p6:6
------> $year ~~ self!dates(⏏)

Roles

Safe re-use, free of ordering
issues like MI and mixins

If two roles provide things
that conflict with each other,

it's a compile-time error

Roles: so far so good…
role Borrowable {
 has $.duration-available;
 has $.cost;
}

role Collectable {
 has $.first-edition;
 has $.fine;
}

class OldBook::ForRent does Borrowable does Collectable {
 # ...
}

…but then what if:

We will fine borrowers who
return things late?

role Borrowable {
 has $.duration-available;
 has $.cost;
 has $.fine;
}

We're told it conflicts!

Multiple inheritance would
have silently had .fine calls

change their meaning!

role Borrowable {
 has $.duration-available;
 has $.cost;
 has $.fine;
}

===SORRY!===
Attribute '$!fine' conflicts in role composition

Safety and flexibility

You get a bunch of static
checking of stuff known at
the end of a class's parse…

…but the full flexibility of
dynamic method dispatch

…but then what if: Let's talk about modules

Using module is a declaration:

Therefore, we load the module
right after parsing the use

use Http::UserAgent;
use JSON::Tiny;

…but then what if: Lexical import

By default, imports are lexical

{
 use Test;
 plan 42;
}
nok now, 0, "Time is non-zero";

===SORRY!===
Undeclared routine:
 nok used at line 5

…but then what if: An opportunity!

Modules can do what they like
as they load

They can dynamically decide
what to export too…

…but then what if: Dynamic subs

Let's write a module to export
subs that, when called, shell

out and run a command:

use Shell::AsSub <ping tracert>;

ping 'jnthn.net';
tracert 'jnthn.net';

…but then what if: Shell::AsSub

sub EXPORT(*@commands) {
 my %subs;
 for @commands -> $command {
 %subs{'&' ~ $command} = sub (*@args) {
 run $command, |@args;
 }
 }
 return %subs;
}

…but then what if: And yes…

The static goodness is kept too!

use Shell::AsSub <tracert>;

traceroute 'jnthn.net';

===SORRY!===
Undeclared routine:
 traceroute used at line 1. Did you mean 'tracert'?

Class declarations, revisited

As the compiler encounters
classes, roles, methods, and
attribute, it builds up objects

representing them
(When we want to sound scary and
clever, we call them meta-objects)

Dynamically making classes

So how can a module produce
classes dynamically?

Create objects as the compiler
does, and export them!

Example: classes from JSON

Here's a crazy simple schema:

[
 {
 "name": "FlightBookedEvent",
 "values": ["flight_code", "passenger_name", "cost"]
 },
 {
 "name": "FlightCancelledEvent",
 "values": ["flight_code", "passenger_name"]
 }
]

Example: classes from JSON

We'd like a module to turn
these into classes we can use:
use Events;

my $e1 = FlightBookedEvent.new(
 flight_code => 'AB123',
 passenger_name => 'jnthn',
 cost => 100);

Building a class

sub class-for($name, @values) {
 # ...
}

Building a class

sub class-for($name, @values) {
 my $type := Metamodel::ClassHOW.new_type(
 :$name);
 # ...
 $type.^compose();
 return $type;
}

Building a class

sub class-for($name, @values) {
 my $type := Metamodel::ClassHOW.new_type(
 :$name);
 for @values -> $attr_name {
 $type.^add_attribute(Attribute.new(
 :name('$!' ~ $attr_name), :type(Mu),
 :has_accessor(1), :package($type)
));
 }
 $type.^compose();
 return $type;
}

The module overall

sub class-for($name, @values) { … }

my package EXPORT::DEFAULT {
 # ...
}

The module overall

use JSON::Tiny;

sub class-for($name, @values) { … }

my package EXPORT::DEFAULT {
 BEGIN {
 my @events = @(from-json(slurp("ev.json")));
 # ...
 }
}

The module overall

use JSON::Tiny;

sub class-for($name, @values) { … }

my package EXPORT::DEFAULT {
 BEGIN {
 my @events = @(from-json(slurp("ev.json")));
 for @events -> (:$name, :@values) {
 OUR::{$name} := class-for(
 $name, @values);
 }
 }
}

And that BEGIN…

use JSON::Tiny;

sub class-for($name, @values) { … }

my package EXPORT::DEFAULT {
 BEGIN {
 my @events = @(from-json(slurp("ev.json")));
 for @events -> (:$name, :@values) {
 OUR::{$name} := class-for(
 $name, @values);
 }
 }
}

So that's nice…but wait!

If classes, roles, etc. are
described using objects…

…can we replace or tweak
those objects somehow?

A little checking

Consider an MVC framework

We want to statically check
methods have URL templates

class Home is Controller {
 method index() is url-template('/') {
 }
}

The frameworky bits

class Controller {
 # ...
}

role UrlTemplate {
 has $.url-template;
}

multi trait_mod:<is>(Method $meth,
 :$url-template!) is export {
 $meth does UrlTemplate($url-template);
}

Changing class

my package EXPORTHOW {
 class SUPERSEDE::class is Metamodel::ClassHOW {
 # XXX Override something here
 }
}

Tweak method adding

my package EXPORTHOW {
 class SUPERSEDE::class is Metamodel::ClassHOW {
 method add_method(Mu $obj, $name, $meth) {
 # XXX Add checking here
 callsame;
 }
 }
}

Adding our check

my package EXPORTHOW {
 class SUPERSEDE::class is Metamodel::ClassHOW {
 method add_method(Mu $obj, $name, $meth) {
 if self.isa($obj, Controller) &&
 $meth !~~ UrlTemplate {
 die "$name lacks a URL template";
 }
 callsame;
 }
 }
}

And trying it out…

use Controller;
class Home is Controller {
 method index() is url-template('/') {
 '<h1>HOME PAGE!!!</h1>'
 }
 method about() {
 'Such awesomes!'
 }
}

===SORRY!===
about lacks a URL template
at y.p6:6

We don't expect the average
Perl 6 user to go doing such

meta-programming

We are enabling library and
framework authors to deliver a

better developer experience

In summary…

Perl 6 makes tasteful
default trade-offs

between static checking
and dynamic flexibility

Allowing some runtime
at compile time makes

compile time much more
powerful

Furthermore, by making
the language mutable (a

dynamic thing), we've
opened the door to a

whole load of valuable
static checks

Questions?

