
Parallelism, Concurrency, 
and Asynchrony in Perl 6 

Jonathan Worthington 



Hi! 
I'm Jonathan. 



Lead developer of 
Rakudo Perl 6 

 

Founder and architect  
of MoarVM 

 

Work as a software 
architect and teacher 

 

Live in beautiful Prague 



My 3 topics for today: 
 

Parallelism 
 

Asynchrony 
 

Concurrency 



There's plenty of 
confusion around them. 

 

They're different. You employ 
them - or encounter them - in 
different situations. And they 

need different solutions. 



These topics have a 
history of pain. 

 

Threads (and data races) 
 

Locks (and deadlocks) 
 

Condition variables  
(and spurious wakeups) 



We've basically had the structured 
programming revolution. 

(You get one goto a month!) 
 

We're not doing so well at 
achieving the same with data. 
(But high scale is proving a good teacher.) 

 

But we're making progress on 
structuring parallelism, 

concurrency, and asynchrony. 



I'm going to take you 
through some of these 
structured approaches. 

 

And, since I've been working on 
Perl 6 implementations of them, 

I'll use that for my examples. 



Let's start with 

parallelism 



Core 1 Core 2 Core 3 Core 4 

Most modern CPUs have 
multiple cores 



For years, we increased CPU clock 
speeds by decreasing feature size, 
bringing components closer so we 

could compute things faster 

0

2000

4000

6000

8000

10000

12000

1
9

7
1

1
9

7
3

1
9

7
5

1
9

7
7

1
9

7
9

1
9

8
1

1
9

8
3

1
9

8
5

1
9

8
7

1
9

8
9

1
9

9
1

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

2
0

1
5

2
0

1
7

2
0

1
9

Feature sizes over time (nm) 



But then...  



But then... 

physics 
happened 



3.0 x 108 m/s 

3.0 x 109 Hz 
= 10 cm 

Speed of light – the 
fastest we can 

move information 

Number of cycles a 
3GHz CPU does per 

second 

How far we can 
move information 

per cycle 



We're already 
down to making 
transistors out of 
just 10s of atoms 



The solution: 

do multiple 
things at the 
same time 



Parallelism is about 
choosing to do multiple 
things at once, in hope 
of reaching a solution 

in less (wallclock) time. 



Parallelism is about 
choosing to do multiple 
things at once, in hope 
of reaching a solution 

in less (wallclock) time. 



use JSON::Tiny; 
 
sub MAIN($file1, $file2) { 
    my $parsed1 = from-json(slurp($file1)); 
    my $parsed2 = from-json(slurp($file2)); 
    say $parsed1 eqv $parsed2 
        ?? 'Files contain identical JSON' 
        !! 'Files contain different JSON'; 
} 

Here's a simple JSON 
comparison program. 



use JSON::Tiny; 
 
sub MAIN($file1, $file2) { 
    my $parsed1 = from-json(slurp($file1)); 
    my $parsed2 = from-json(slurp($file2)); 
    say $parsed1 eqv $parsed2 
        ?? 'Files contain identical JSON' 
        !! 'Files contain different JSON'; 
} 

There are two tasks 
with no dependencies 

between them. 



Let's do 
them in 
parallel! 



But... 



But... 
 

How to pick the best number of 
tasks to work on at a time? 

 

How to wait correctly and 
efficiently for completion, and 

correctly get the results? 
 

How do we correctly handle 
exceptions in parallel work? 



use JSON::Tiny; 
 
sub MAIN($file1, $file2) { 
    my $parsing1 = start from-json(slurp($file1)); 
    my $parsing2 = start from-json(slurp($file2)); 
    my ($parsed1, $parsed2) = await $parsing1, $parsing2; 
    say $parsed1 eqv $parsed2 
        ?? 'Files contain identical JSON' 
        !! 'Files contain different JSON'; 
} 

Use Promises! 



use JSON::Tiny; 
 
sub MAIN($file1, $file2) { 
    my $parsing1 = start from-json(slurp($file1)); 
    my $parsing2 = start from-json(slurp($file2)); 
    my ($parsed1, $parsed2) = await $parsing1, $parsing2; 
    say $parsed1 eqv $parsed2 
        ?? 'Files contain identical JSON' 
        !! 'Files contain different JSON'; 
} 

Use Promises! 

Schedule work on the thread pool. It can 
consider hardware, memory, etc. to 

choose appropriate number of workers. 



use JSON::Tiny; 
 
sub MAIN($file1, $file2) { 
    my $parsing1 = start from-json(slurp($file1)); 
    my $parsing2 = start from-json(slurp($file2)); 
    my ($parsed1, $parsed2) = await $parsing1, $parsing2; 
    say $parsed1 eqv $parsed2 
        ?? 'Files contain identical JSON' 
        !! 'Files contain different JSON'; 
} 

Use Promises! 

Can await any number of Promises; it 
waits efficiently (OS kernel aware) and 

unpacks the results for you 



use JSON::Tiny; 
 
sub MAIN($file1, $file2) { 
    my $parsing1 = start from-json(slurp($file1)); 
    my $parsing2 = start from-json(slurp($file2)); 
    my ($parsed1, $parsed2) = await $parsing1, $parsing2; 
    say $parsed1 eqv $parsed2 
        ?? 'Files contain identical JSON' 
        !! 'Files contain different JSON'; 
} 

Use Promises! 

Any exceptions thrown by the started 
code are captured, and then automatically 

re-thrown on the awaiting thread. 



This is task parallelism. 
We find independent 

tasks, and work on 
them in parallel. 



Here's our next challenge: 



Here's our next challenge: 
parallelizing a program that 
parses many data files from 
weather stations, filters out 
those in Europe, and then 

finds the place with the 
maximum temperature. 



sub MAIN($data-dir) { 
    my $filenames = dir($data-dir); 
    my $data      = $filenames.map(&slurp); 
    my $parsed    = $data.map(&parse-climate-data); 
    my $european  = $parsed.grep(*.continent eq 'Europe'); 
    my $max       = $european.max(by => *.average-temp); 
    say "$max.place() is the hottest!"; 
} 
 
# Some utility subs omitted here... 

We'll build a pipeline of operations 
(hint: in Perl 6, storing the result of 

things like map and grep in a Scalar 
lets you talk about the pipeline 

without evaluating it for results!) 



With this approach, we don't 
build up a lot of state in 

memory. One file at a time is 
pulled through the pipeline. 

map 
&slurp 

map 
&parse-climate-data 

grep 
*.continent eq 'europe' 



Here, we're seeking data 
parallelism. We have 
many data items, and 

want to do the same to 
each of them - so we 

partition the data. 



We'd like to run the pipeline 
on a bunch of threads, 
feeding them data and 
collecting the results. 

map 
&slurp 

map 
&parse-climate-data 

grep 
*.continent eq 'europe' 

map 
&slurp 

map 
&parse-climate-data 

grep 
*.continent eq 'europe' 



But... 
 

How to distribute the work and 
collect the results safely? 

 
How to collect exceptions? 

 
What if keeping results ordered 

relative to input matters? 



sub MAIN($data-dir) { 
    my $filenames = dir($data-dir).race(batch => 10); 
    my $data      = $filenames.map(&slurp); 
    my $parsed    = $data.map(&parse-climate-data); 
    my $european  = $parsed.grep(*.continent eq 'Europe'); 
    my $max       = $european.max(by => *.average-temp); 
    say "$max.place() is the hottest!"; 
} 
 
# Some utility subs omitted here... 

We use race to switch on parallel 
processing of the pipeline! 

Calling .race() coerces the pipeline into a parallel 
one. Once we reach the max call, multiple threads 

will be spawned, processing the pipeline on 
batches of 10 items at a time. 



.race(batch => 32, degree => 4) 

Run the pipeline in parallel, work in batches 
of 32 values at a time, and create 4 parallel 
workers. Produce results in whatever order 

they become available. 

.hyper(batch => 64, degree => 2) 
Run the pipeline in parallel, work in batches 
of 64 values at a time, and create 2 parallel 

workers. Make sure the results produced are 
relative to the order of the inputs. 



.race() 

Run the pipeline in parallel, work out the best 
batch size and number of workers for me. 

Produce results in whatever order they 
become available. 

.hyper() 
Run the pipeline in parallel, work out the best 

batch size and number of workers for me. 
Make sure the results produced are relative 

to the order of the inputs. 



Next up: 

asynchrony 



All about reacting to 
things that will happen 

in the future. 
 

Exactly when they 
happen is not under 
our direct control. 



Examples 
 

Spawned processes completing 
 

Responses to web requests arriving 
 

Incoming connections to a server 
 

User interaction with a GUI 
 

Signals 



In some cases, we can start 
an operation that will 

complete in the future, and 
block until it does. 

 
But sometimes this doesn't 
meet our needs - or won't 

scale far enough. 



Example: scp all the things 
 

We have a bunch of files we need to 
securely copy to many servers 

 

We can run the scp program in a loop 
to upload them one at a time: 

 
 
 

But how might we do 4 at a time? 

for @uploads -> $file-info { 
    run('scp', $file-info.local, $file-info.target); 
} 



Using Proc::Async 
 

First, let's adapt our code to use 
Proc::Async instead (built in to Perl 6): 

 
 
 
 

It's await again! We get a Promise 
back from $proc.start. 

for @uploads -> $file-info { 
    my $proc = Proc::Async.new('scp', 
        $file-info.local, $file-info.target); 
    await $proc.start; 
} 



Do them all at once! 
 

To get a step closer, we can now push 
each Promise onto an array, and then 

await all of them: 
 
 
 
 
 

Of course, this hammers the network! 

my @working; 
for @uploads -> $file-info { 
    my $proc = Proc::Async.new('scp', 
        $file-info.local, $file-info.target); 
    push @working, $proc.start; 
} 
await @working; 



Maximum 4 at a time 
 

If @working grows to 4, we wait for any 
Promise to be kept, and grep on unkept: 

my @working; 
for @uploads -> $file-info { 
    my $proc = Proc::Async.new('scp', 
        $file-info.local, $file-info.target); 
    push @working, $proc.start; 
 
    if @working == 4 { 
        await Promise.anyof(@working); 
        @working .= grep({ !$_ }); 
    } 
} 
await @working; 



Simple asynchronous 
operations are started, 
and produce one result. 
But some asynchronous 

data sources produce 
many values over time. 



Asynchronous data streams 
 

File change notifications 
 

Incoming requests to a server 
 

Incoming packets of data to a 
socket 

 
GUI events 



Supplies 
 

In Perl 6, an asynchronous stream 
of values is called a Supply 

Infinite 
Supply 

Finite Supply 
(success) 

Finite Supply 
(error) 

Emit Emit Emit 

Emit Emit Emit Done 

Emit Emit Quit 

Emit 



Automated test runner 
 

We'll use a file change notification 
Supply to trigger automated 

running of a test suite 
 

We want to watch a test directory, 
and optionally a number of source 

directories - and should only do one 
test run at a time 



File changes 
 

The IO::Notification built-in provides 
a way to watch for changes 

 
The watch-path method returns a 

Supply, which we can tap: 

my $changes = IO::Notification.watch-path($test-dir); 
$changes.tap({ 
    say "It changed!"; 
}); 



Supply is the dual of Seq 
 

Earlier, we set up a pipeline of operations 
for querying climate data. When we asked 

for the hottest place, max pulled values 
through the pipeline to work it out. 

 
A Supply is also a pipeline, but values are 

instead pushed through it as they are 
produced at their (asynchronous) source. 



Familiar methods, but async 
 

This means we can use things like map and 
grep to project and filter data that arrives 
asynchronously. For example, we can filter 

by file extension: 

my $changes = IO::Notification.watch-path($src-dir); 
my $code    = $changes.grep(*.path ~~ /<.pm .p6> $/); 
$code.tap({ 
    say "A source file changed!"; 
}); 



Nice, but… 



Nice, but… 
 

Most people don't solve all of their list-
related problems using map, grep, and 

other higher order friends 
 

Some problems are more easily expressed 
using for loops, if statements, etc. 

 
But a for loop is a blocking, synchronous 

thing. What about asynchronous data? 



whenever 
 

Perl 6 has an asynchronous looping 
construct called whenever 

 
The body runs whenever a value arrives: 

 
 
 

Being a loop, you can even use LAST to 
decide how to handle end of sequence! 

whenever IO::Notification.watch-path($test-dir) { 
    maybe-run-tests('Tests changed'); 
} 



react/supply 
 

A whenever can live in a supply block 
(which can emit values) or a react block 

(works like entering an event loop): 

my $code = supply { 
    whenever IO::Notification.watch-path($src-dir) { 

    emit .path if .path ~~ /<.pm .p6> $/; 
    } 
} 
react { 
    whenever $code -> $path { 

    say "Code file $path changed!"; 
    } 
} 



Back to our test runner 
 

On changes to the specified test and 
source directories, maybe run the tests: 

sub MAIN($test-dir, *@source-dirs) { 
    react { 
        whenever IO::Notification.watch-path($test-dir) { 
            maybe-run-tests('Tests changed'); 
        } 
        for @source-dirs -> $dir { 
            whenever IO::Notification.watch-path($dir) { 
                maybe-run-tests('Source changed'); 
            } 
        } 
        ... 
    } 
} 



Deciding whether to run 
 

The notifications may arrive on different 
threads - but only one thread may be in a 
supply/react at once - so this is safe: 

sub maybe-run-tests($reason) { 
    state $running-tests = False; 
    unless $running-tests { 
        say "Running tests ($reason)"; 
        $running-tests = True; 
        whenever run-tests() { 
            print "\n\n"; 
            $running-tests = False; 
        } 
    } 
} 



Actually doing the running 
 

It's our old friend, Proc::Async again. 
We output STDOUT indented and discard 

STDERR. We return a Promise; whenever 
can work fine against those too. 

sub run-tests() { 
    my $runner = Proc::Async.new('prove ...'); 
    whenever $runner.stdout -> $output { 
        print $output.indent(2); 
    } 
    whenever $runner.stderr { } # Discard                 
    return $runner.start; 
} 



Perl 6 keeps asynchrony 
explicit. It provides 
structured language 
support, to avoid a 

tangle of callbacks and 
guide programmers 

towards thread safety. 



Finally: 

concurrency 



Concurrency is about 
competition to access 

and mutate some 
shared resource. 



Passengers checking in for a flight 
at the same time must not be 
able to choose the same seat! 



class Flight { 
    has %!seats; 
 
    submethod BUILD(:@seat-labels) { 
        %!seats{@seat-labels} = False xx *; 
    } 
 
    method choose-seat($seat, $passenger-name) { 
        die "No such seat" unless %!seats{$seat}:exists; 
        die "Seat taken!" if %!seats{$seat}; 
        %!seats{$seat} = $passenger-name; 
    } 
} 

A simple seat allocator 



method choose-seat($seat, $passenger-name) { 
    die "No such seat" unless %!seats{$seat}:exists; 
    die "Seat taken!" if %!seats{$seat}; 
    %!seats{$seat} = $passenger-name; 
} 

But... 
 

The code contains a data race! 
 
 
 
 

If two threads are in this method at the 
same time with the same $seat, they 

may both see the seat is not taken, and 
then place their passenger into it! 



Solution: a monitor 
 

A monitor is a class where only one 
thread may be running a method on a 

particular instance at a time 
 

So, the second passenger wanting to 
select a seat would have to wait until 
the first has finished selecting theirs 

 
How do we refactor our code? 



use OO::Monitors; 
 
monitor Flight { 
    has %!seats; 
 
    submethod BUILD(:@seat-labels) { 
        %!seats{@seat-labels} = False xx *; 
    } 
 
    method choose-seat($seat, $passenger-name) { 
        die "No such seat" unless %!seats{$seat}:exists; 
        die "Seat taken!" if %!seats{$seat}; 
        %!seats{$seat} = $passenger-name; 
    } 
} 

It's easy! 



use OO::Monitors; 
 
monitor Flight { 
    has %!seats; 
 
    submethod BUILD(:@seat-labels) { 
        %!seats{@seat-labels} = False xx *; 
    } 
 
    method choose-seat($seat, $passenger-name) { 
        die "No such seat" unless %!seats{$seat}:exists; 
        die "Seat taken!" if %!seats{$seat}; 
        %!seats{$seat} = $passenger-name; 
    } 
} 

It's easy! 

New kind of package, provided 
by OO::Monitors module! 



But... 



But... 
 

Suppose we use a monitor in an 
asynchronous web application 

 
In the case of contention, one of the 

processing threads will block 
synchronously waiting for the other 

thread to leave the monitor 
 

Can we do better? 



use OO::Actors; 
 
actor Flight { 
    has %!seats; 
 
    submethod BUILD(:@seat-labels) { 
        %!seats{@seat-labels} = False xx *; 
    } 
 
    method choose-seat($seat, $passenger-name) { 
        die "No such seat" unless %!seats{$seat}:exists; 
        die "Seat taken!" if %!seats{$seat}; 
        %!seats{$seat} = $passenger-name; 
    } 
} 

Use an actor instead! 



What an actor does 
 

An actor puts incoming method calls 
into a processing queue 

 
Method calls on an actor return a 
Promise, which the caller awaits: 

 
 

The processing thread is free to deal 
with other requests in the meantime! 

await $flight.choose-seat($seat, $passenger-name); 



Both actors and 
monitors factor the 

concurrency control out 
of your code, letting 
you get on with the 

interesting logic 



In closing... 



It's time to embrace 
structured approaches to 
parallel, asynchronous, 

and concurrent 
programming. 



And it's time for our 
languages to support us 

in this - especially in 
providing syntactic relief 

for asynchronous flow 
control, which can make 

a huge difference. 



Thank you! 
 

Any questions? 


