
Primitives,
composition,

patterns

Perl 6 concurrency, from building blocks
to practical problem solving

Jonathan Worthington |

A quick tour of the key Perl 6
concurrency primitives, ways

of composing concurrent
work, and a look at how we
might tackle some practical

concurrent problems

Perl 6
Concurrency

Primitives

One value Sequence of
values

Synchronous

Asynchronous

How do we represent...

A single synchronous value?

Well, that's just the value itself!

> 42.WHAT
(Int)

> "příběh".WHAT
(Str)

> class ShoppingList { has @.products }
> ShoppingList.new(products => <chicken ginger garlic>).WHAT
(ShoppingList)

One value Sequence of
values

Synchronous Int, Str, ShoppingList

Asynchronous

How do we represent...

A sequence of synchronous
values

Represented by a Seq (for "Sequence")

Can produce values on demand (so may

be lazy and infinite)

Doesn't remember the values

Example: lines from a file
> my $fh = open "README.md"
IO::Handle<"README.md".IO>(opened)

> $fh.lines.WHAT
(Seq)

> $fh.lines.head(2).perl
("# Rakudo Perl 6", "").Seq

> $fh.lines.head(1).perl
("This is Rakudo Perl, a Perl 6 compiler for the MoarVM",).Seq

> $fh.lines.grep(/Perl/).map(*.chars)
(72 66 68 61 61 73 71 68 64 61 65 62 63)

> $fh.eof
True

Concurrency with Seq
sub guesses($name) {
 gather loop {
 take prompt "$name, make a guess? ";
 }
}

Concurrency with Seq
sub guesses($name) {
 gather loop {
 take prompt "$name, make a guess? ";
 }
}

sub alternate(Iterable $a, Iterable $b) {
 my $iter-a = a.iterator;
 my $iter-b = b.iterator;
 gather loop {
 take $iter-a.pull-one;
 take $iter-b.pull-one;
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

sub alternate(Iterable $a, Iterable $b) {
 my $iter-a = a.iterator;
 my $iter-b = b.iterator;
 gather loop {
 take $iter-a.pull-one;
 take $iter-b.pull-one;
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

sub alternate(Iterable $a, Iterable $b) {
 my $iter-a = a.iterator;
 my $iter-b = b.iterator;
 gather loop {
 take $iter-a.pull-one;
 take $iter-b.pull-one;
 }
}

sub guesses($name) { # $name is Player A
 gather loop {
 take prompt "$name, make a guess? ";
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

sub alternate(Iterable $a, Iterable $b) {
 my $iter-a = a.iterator;
 my $iter-b = b.iterator;
 gather loop {
 take $iter-a.pull-one;
 take $iter-b.pull-one;
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

sub alternate(Iterable $a, Iterable $b) {
 my $iter-a = a.iterator;
 my $iter-b = b.iterator;
 gather loop {
 take $iter-a.pull-one;
 take $iter-b.pull-one;
 }
}

Concurrency with Seq
my $number = (1..100).pick;
say "I've thought of a number between 1 and 100. Guess it!";

for alternate guesses('Player A'), guesses('Player B') {
 when $number {
 say "You win!";
 exit;
 }
 when * < $number {
 say "Too low"
 }
 when * > $number {
 say "Too high"
 }
}

sub alternate(Iterable $a, Iterable $b) {
 my $iter-a = a.iterator;
 my $iter-b = b.iterator;
 gather loop {
 take $iter-a.pull-one;
 take $iter-b.pull-one;
 }
}
sub guesses($name) { # $name is Player B
 gather loop {
 take prompt "$name, make a guess? ";
 }
}

Concurrency with Seq

Cooperative (control explicitly given up)

Asking for the next value blocks until it is
available (either on computation or IO)

Quietly useful; often so quietly that

people don't realize it's concurrency!

One value Sequence of
values

Synchronous Int, Str, ShoppingList Seq

Asynchronous

How do we represent

A single asynchronous value?

A Promise represents a value that will
be produced asynchronously

> my $p = Promise.new
> $p.status
Planned

> $p.keep(42)
Nil

> $p.status
Kept
> $p.result
42

Or inability to produce a value

A Promise can convey an exception

> my $p = Promise.new
> $p.break("I just couldn't do it man!")
Nil

> $p.status
Broken

> $p.result
Tried to get the result of a broken Promise
 in block <unit> at <unknown file> line 1
Original exception:
 I just couldn't do it man!
 in block <unit> at <unknown file> line 1

How is this useful?

A Promise will typically be kept by an
operation that runs concurrently

That may be by code running on another

thread, or some kind of asynchronous
I/O (running a process, a network

connection, etc.)

Kept by computation

The start keyword runs code in the
thread pool, and returns a Promise that

is kept/broken with the result

> my $p = start (1, 1, * + * ... Inf)[100000]
> $p.status
Planned

> $p.status
Kept

> $p.result.chars
20899

Kept by running a process

Built-in asynchronous operations uses
Promise to convey results also

> my $proc = Proc::Async.new('/bin/sh', '-c', 'sleep 4')
Proc::Async.new(...)

> my $exit = $proc.start
> $exit.status
Planned

> $exit.status
Kept
> $exit.result.exitcode
0

One value Sequence of
values

Synchronous Int, Str, ShoppingList Seq

Asynchronous Promise

How do we represent...

A sequence of asynchronous
values

Represented by a Supply

As with Seq, can chain operations

But values are pushed through the

pipeline of operations (it's reactive)

Basic publish/subscribe

> my $source = Supplier.new
> my $supply = $source.Supply;

> my $t1 = $supply.tap: { say "Got $_" }
> $source.emit("chili")
Got chili

> my $t2 = $supply.map(*.uc).tap: { say "OH WOW $_" }
> $source.emit("beef")
Got beef
OH WOW BEEF

> $t1.close
> $source.emit("noodles")
OH WOW NOODLES

Live vs. on-demand

A Supplier produces a live Supply

We tap into the stream of values at its
current point, and won't see the past

Many - in fact, most - Supplies are on-

demand; they start producing values at
the point that they are tapped

> my $ticks = Supply.interval(0.5)

> my $tap = $ticks.tap: { say now }; sleep 3; $tap.close;
Instant:1498686115.539947
Instant:1498686116.040888
Instant:1498686116.541719
Instant:1498686117.042902
Instant:1498686117.543302
Instant:1498686118.044487

The interval Supply factory

When the Supply returned by
interval is tapped, it emits a value at

the specified time interval

> my $proc = Proc::Async.new('ps')
> my $collected = '';
> $proc.stdout.tap: { $collected ~= $_ }

> $proc.start.result.exitcode
0

> $collected
 PID TTY TIME CMD
 6002 pts/18 00:00:00 bash
21472 pts/18 00:00:06 moar
29685 pts/18 00:00:00 ps

Proc::Async again

Output arriving from stdout and stderr is
exposed as a Supply also

One value Sequence of
values

Synchronous Int, Str, ShoppingList Seq

Asynchronous Promise Supply

How do we represent...

Composing
Asynchronous

Operations

Real programs will often involve
dozens of asynchronous operations

We need good ways to compose
them (that is, use them together)

Good compositions offer safety,

correctness, error propagation, and
resource management

await

The await function is the best way to
prevent progress until a single value

becomes available

Returns the Promise result if kept, or

throws its exception if broken

> my $p = start (1, 1, * + * ... Inf)[100000]
> say await($p).chars
20899

Semantics of await

In Perl 6.c, it blocks the thread running
the code until the result is available

In Perl 6.d, an await performed on a
thread in the thread pool will take a

continuation. When the results is
available, the continuation is scheduled.

await many things

When many Promise objects are passed
to await, it will wait for all of them and

then return a list of the results

> my $parse-foo = start from-json slurp 'foo.json'
> my $parse-bar = start from-json slurp 'bar.json'

> my ($foo, $bar) = await $parse-foo, $parse-bar

> say $foo
{foo => 42}
> say $bar
[1 2 3]

Sequencing

Sometimes, we want to wait until one
of, or all of, a set of Promise objects are
either kept or broken - without caring for

the results (or getting the errors)

This is done by Promise.anyof(...)
and Promise.allof(...)

Kill a process after a timeout

A fairly common use of anyof is to wait
for something to happen, or for a

timeout, whichever comes first

> my $proc = Proc::Async.new('/bin/sh', '-c', 'sleep 100');
> my $exited = $proc.start

> await Promise.anyof($exited, Promise.in(5))
True

> unless $exited { $proc.kill }
1

Supplies: more challenging

Operations receiving data from multiple
supplies present some challenges:

Data may arrive concurrently

Must keep track of when we're done

Must remember to "unsubscribe"

Train delay notifications

We have a stream of events about delays
to train services

An app uses a web socket to receive
notifications of delays

class TrainDelay {
 has Str $.train-code;
 has Int $.minutes-delayed;
}

Train delay notifications

The app sends a list of train codes that
the user wishes to get notifications on

We want to batch up delay information

arriving within 15 seconds, so as to
reduce network traffic

A means to notify

We will create a Supplier in order to
emit notifications on

We return the Supply obtained from it

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 # ...
 return $notifications.Supply;
}

Subscribe for each train

There is a Supply of delay information
for each train, which we can tap

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 for @relevant-codes -> $code {
 delays-for($code).tap: -> $delay {
 # ...
 }
 }
 return $notifications.Supply;
}

Collect latest delay info

Unpack the object field we want, form a
message, stash it away

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @latest;
 for @relevant-codes -> $code {
 delays-for($code).tap: -> (:$minutes-delayed, *%) {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 return $notifications.Supply;
}

Notify every 15 seconds

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @latest;
 for @relevant-codes -> $code {
 delays-for($code).tap: -> (:$minutes-delayed, *%) {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 Supply.interval(15).tap: {
 if @latest {
 $notifications.emit: @latest.join("\n");
 @latest = ();
 }
 }
 return $notifications.Supply;
}

So easy, right?

So easy, right?

Well, not so fast

So easy, right?

Well, not so fast

This code leaks resources

And it has data races

And it silently eats any errors

Leaks

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @latest;
 for @relevant-codes -> $code {
 delays-for($code).tap: -> (:$minutes-delayed, *%) {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 Supply.interval(15).tap: {
 if @latest {
 $notifications.emit: @latest.join("\n");
 @latest = ();
 }
 }
 return $notifications.Supply;
}

Tracking the taps

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @taps;
 my @latest;
 for @relevant-codes -> $code {
 push @taps, delays-for($code).tap: -> (:$minutes-delayed, *%) {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 push @taps, Supply.interval(15).tap: {
 if @latest {
 $notifications.emit: @latest.join("\n");
 @latest = ();
 }
 }
 return $notifications.Supply.on-close({ @taps>>.close });
}

Data races

sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @taps;
 my @latest;
 for @relevant-codes -> $code {
 push @taps, delays-for($code).tap: -> (:$minutes-delayed, *%) {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 push @taps, Supply.interval(15).tap: {
 if @latest {
 $notifications.emit: @latest.join("\n");
 @latest = ();
 }
 }
 return $notifications.Supply.on-close({ @taps>>.close });
}

Fix it with a lock
sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @taps;
 my $lock = Lock.new;
 my @latest;
 for @relevant-codes -> $code {
 push @taps, delays-for($code).tap: -> (:$minutes-delayed, *%) {
 $lock.protect: {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 }
 push @taps, Supply.interval(15).tap: {
 $lock.protect: {
 if @latest {
 $notifications.emit: @latest.join("\n");
 @latest = ();
 }
 }
 }
 return $notifications.Supply.on-close({ @taps>>.close });
}

All this tricky boilerplate
sub user-notifications(@relevant-codes --> Supply) {
 my $notifications = Supplier.new;
 my @taps;
 my $lock = Lock.new;
 my @latest;
 for @relevant-codes -> $code {
 push @taps, delays-for($code).tap: -> (:$minutes-delayed, *%) {
 $lock.protect: {
 push @latest, "$code delay: $minutes-delayed mins";
 }
 }
 }
 push @taps, Supply.interval(15).tap: {
 $lock.protect: {
 if @latest {
 $notifications.emit: @latest.join("\n");
 @latest = ();
 }
 }
 }
 return $notifications.Supply.on-close({ @taps>>.close });
}

supply and whenever

A supply block evaluates to a Supply

The body runs each time it is tapped

The whenever construct taps a Supply

Automatic tap management and
concurrency control

Start with a supply block

It is returned implicitly, though we could
write return before it if we wished

sub user-notifications(@relevant-codes --> Supply) {
 supply {

 }
}

Tap with whenever

This automatically captures the taps, and
will automatically close them for us

sub user-notifications(@relevant-codes --> Supply) {
 supply {
 for @relevant-codes -> $code {
 whenever delays-for($code) {
 }
 }
 whenever Supply.interval(15) {
 }
 }
}

Just emit values
sub user-notifications(@relevant-codes --> Supply) {
 supply {
 my @latest;
 for @relevant-codes -> $code {
 whenever delays-for($code) {
 push @latest,
 "$code delay: {.minutes-delayed} mins";
 }
 }
 whenever Supply.interval(15) {
 if @latest {
 emit @latest.join("\n");
 @latest = ();
 }
 }
 }
}

And the concurrency control?

Only one thread is allowed to be inside
of the code in a Supply block at a time

No two whenever blocks can be running

at the same time

No whenever block can start until the
supply block's setup work is done

If you know what actors are...

You can think of a supply block as being
a little bit like one (it's not quite, but...)

Each tapping instantiates a new actor

(the state is just lexicals, not attributes)

One message is processed at a time

Practical
Examples

A retry mechanism

Various ways to build these

The sequence operator is a cute way to
specify the back-off strategy

We'll build it a couple of different ways

to see some of the possibilities

Retry synchronous operation

The first way assumes we are passed a
code object that runs synchronously

We'll return a Promise that will be kept

when the operation succeeds (maybe
after some retries), or is broken when all

of the retries are used up

Solution

Loop over back-off intervals prepended
with zero, break out of the loop if we
succeed, throw if we never succeed

sub retry(&operation, @intervals --> Promise) {
 start {
 for flat 0, @intervals -> $backoff {
 await Promise.in($backoff);
 try operation();
 last without $!;
 LAST .rethrow with $!;
 }
 }
}

Solution

Loop over back-off intervals prepended
with zero, break out of the loop if we
succeed, throw if we never succeed

sub retry(&operation, @intervals --> Promise) {
 start {
 for flat 0, @intervals -> $backoff {
 await Promise.in($backoff);
 try operation();
 last without $!;
 LAST .rethrow with $!;
 }
 }
}

In Perl 6.d, this will free
up the thread to work
on another operation

Example usage: immediate
success

await retry { say "Worked!"; 42 }, (1, 2 ... 5);

Worked!

Example usage: success after
some retries

await retry
 {
 state $i++;
 say "Attempt $i at {now}";
 die "oops" if $i < 3;
 say "Worked!"
 },
 (1, 2 ... 5);

Attempt 1 at Instant:1498776121.241535
Attempt 2 at Instant:1498776122.252485
Attempt 3 at Instant:1498776124.258838
Worked!

Example usage: broken
await retry
 {
 state $i++;
 say "Attempt $i at {now}";
 die "totally busted"
 },
 (1, 2 ... 5);

Attempt 1 at Instant:1498776281.514535
Attempt 2 at Instant:1498776282.518944
Attempt 3 at Instant:1498776284.524859
Attempt 4 at Instant:1498776287.532635
Attempt 5 at Instant:1498776291.541726
Attempt 6 at Instant:1498776296.552463
Tried to get the result of a broken Promise
 in block <unit> at retry-and-backoff.p6 line 23
Original exception:
 totally busted
 ...

For asynchronous work...

Just await what the operation returns

Again, will scale better in v6.d

sub retry(&operation, @intervals --> Promise) {
 start {
 for flat 0, @intervals -> $backoff {
 await Promise.in($backoff);
 try await operation();
 last without $!;
 LAST .rethrow with $!;
 }
 }
}

Back-off strategies

Arithmetic progression, as already:

Geometric progression:

Fibonacci sequence:

retry &the-work, (5, 10 ... 25)

retry &the-work, (2, 4, 8 ... 64)

retry &the-work, (1, 1, * + * ... 34)

Thinking less: say how many

Especially with Fibonacci, it becomes
less obvious how many retries we'll

actually get. So, just write the infinite
sequence and use head.

retry &the-work, (5, 10 ... *).head(5)

retry &the-work, (2, 4, 8 ... *).head(5)

retry &the-work, (1, 1, * + * ... *).head(5)

A Supply retry
sub retry(Supply $s, @intervals --> Supply) {
 supply {
 my @remaining = @intervals;
 sub attempt() {
 whenever $s -> $result {
 emit $result;
 QUIT {
 when @remaining != 0 {
 whenever Promise.in(@remaining.shift) {
 attempt();
 }
 }
 }
 }
 }
 attempt();
 }
}

A Supply retry
sub retry(Supply $s, @intervals --> Supply) {
 supply {
 my @remaining = @intervals;
 sub attempt() {
 whenever $s -> $result {
 emit $result;
 QUIT {
 when @remaining != 0 {
 whenever Promise.in(@remaining.shift) {
 attempt();
 }
 }
 }
 }
 }
 attempt();
 }
}

Get our own copy of
the interval array, so
we can shift from it

A Supply retry
sub retry(Supply $s, @intervals --> Supply) {
 supply {
 my @remaining = @intervals;
 sub attempt() {
 whenever $s -> $result {
 emit $result;
 QUIT {
 when @remaining != 0 {
 whenever Promise.in(@remaining.shift) {
 attempt();
 }
 }
 }
 }
 }
 attempt();
 }
}

QUIT is for handling
asynchronous

exceptions

A Supply retry
sub retry(Supply $s, @intervals --> Supply) {
 supply {
 my @remaining = @intervals;
 sub attempt() {
 whenever $s -> $result {
 emit $result;
 QUIT {
 when @remaining != 0 {
 whenever Promise.in(@remaining.shift) {
 attempt();
 }
 }
 }
 }
 }
 attempt();
 }
}

If no when clauses
match in a QUIT,

exception re-thrown
(just like in CATCH)

A Supply retry
sub retry(Supply $s, @intervals --> Supply) {
 supply {
 my @remaining = @intervals;
 sub attempt() {
 whenever $s -> $result {
 emit $result;
 QUIT {
 when @remaining != 0 {
 whenever Promise.in(@remaining.shift) {
 attempt();
 }
 }
 }
 }
 }
 attempt();
 }
}

Notice how whenever
can work with a

Promise too; it's just
like a 1-value Supply!

A Supply retry
sub retry(Supply $s, @intervals --> Supply) {
 supply {
 my @remaining = @intervals;
 sub attempt() {
 whenever $s -> $result {
 emit $result;
 QUIT {
 when @remaining != 0 {
 whenever Promise.in(@remaining.shift) {
 attempt();
 }
 }
 }
 }
 }
 attempt();
 }
}

Since whenever is an
asynchronous

construct, this is not
actually recursive!

Reactive message processing

Using supply blocks, it is possible to
build up chains of operations that react

to incoming messages

A nice fallout from this approach is that
if something crashes and goes

unhandled, it will tear down the chain
for us; we can then restart it

An example pipeline

JSON Messages

Parsed

Dispatched to a handler

Auto-restart on crash

The parse stage

Parses the input as JSON, and emits the
result of the parsing

sub parse(Supply $incoming --> Supply) {
 use JSON::Tiny;
 supply {
 whenever $incoming {
 emit from-json($_);
 }
 }
}

Basic JSONobject mapper
sub make-objectifier(%class-map) {
 return -> Supply $incoming {
 supply {
 whenever $incoming -> $json {
 if $json ~~ Hash and $json<type>:exists {
 if %class-map{$json<type>}:exists {
 emit %class-map{$json<type>}.new(|$json);
 }
 else {
 die "Message type $json<type> unhandled";
 }
 }
 else {
 die "JSON did not parse to an object";
 }
 }
 }
 }
}

Call a handler on each

We could write:

But that's just a long way to say:

sub make-processor(&handler) {
 return -> Supply $incoming {
 supply {
 whenever $incoming -> $object {
 handler($object)
 }
 }
 }
}

sub make-processor(&handler) {
 return $incoming.map(&handler);
}

An auto-restarter
sub auto-restart(Supply $incoming) {
 supply {
 sub run() {
 whenever $incoming {
 QUIT {
 default {
 .note;
 run();
 }
 }
 }
 }
 run();
 }
}

Some message types

These are classes that some incoming
messages will be transformed into

class TrainDelayed {
 has $.train-code;
 has $.minutes;
}

class TrainCancelled {
 has $.train-code;
 has $.reason;
}

Some message handlers

Now that we have types, we can use
multiple dispatch to write handlers

multi handle(TrainDelayed $d) {
 say "Train $d.train-code() was delayed $d.minutes() mins";
}
multi handle(TrainCancelled $c) {
 say "Train $c.train-code() was cancelled. $c.reason()";
}

A composition mechanism

Finally, we need a way to put all of the
pieces together into one pipeline

sub compose(Supply $input, *@stages) {
 my $current = $input;
 for @stages -> &build-stage {
 $current = build-stage($current);
 }
 return $current;
}

A composition mechanism

Which is actually just a reduce, in
functional speak

sub compose(Supply $input, *@stages) {
 ($input, |@stages).reduce({ $^b($^a) })
}

Let's run it!

Compose the pipeline, and then run it (it
runs forever, so wait never returns)

my $pipeline = compose
 $fake-message-source,
 &parse,
 make-objectifier({
 delay => TrainDelayed,
 cancellation => TrainCancelled
 }),
 make-processor(&handle),
 &auto-restart;

$pipeline.wait;

Concurrent processing

Supplies are a tool for controlling
concurrency, not introducing it

However, with a little effort we can get

some concurrency in place

We can also support asynchronous
message handlers

Parse JSON in the thread pool

Note: the trade-off here is that we may
lose message order

sub parse(Supply $incoming --> Supply) {
 use JSON::Tiny;
 supply {
 whenever $incoming {
 whenever start from-json($_) -> $parsed {
 emit $parsed;
 }
 }
 }
}

Allowing concurrent handlers

This way lets handlers choose to be
concurrent (return Promise or Supply)

but will cope with synchronous too

sub make-processor(&handler) {
 return -> Supply $incoming {
 supply {
 whenever $incoming -> $object {
 whenever handler($object) { }
 }
 }
 }
}

The whenever means
we will not lose

asynchronous errors

Allowing concurrent handlers

This way lets handlers choose to be
concurrent (return Promise or Supply)

but will cope with synchronous too

sub make-processor(&handler) {
 return -> Supply $incoming {
 supply {
 whenever $incoming -> $object {
 whenever handler($object) { }
 }
 }
 }
}

And synchronous
handlers? Return value

coerces into a 1-item
Supply. "Just works."

Running handlers on threads

Alternatively, we could expect handlers
to always be synchronous and then run

them off in the thread pool

sub make-processor(&handler) {
 return -> Supply $incoming {
 supply {
 whenever $incoming -> $object {
 whenever start handler($object) { }
 }
 }
 }
}

A word of warning

Once we add in concurrency, we lose
back-pressure

A very active source of messages could

flood the system with work

For production use, it's wise to have a
mechanism to cope with this

A back-pressure approach
sub make-processor(&handler) {
 return -> Supply $incoming {
 supply {
 my @in-progress;
 whenever $incoming -> $object {
 @in-progress .= grep(*.status == Planned);
 if @in-progress > 5 {
 await Promise.anyof(@in-progress);
 }
 push @in-progress, my $done = Promise.new;
 whenever start handler($object) {
 $done.keep();
 }
 }
 }
 }
}

A back-pressure approach
sub make-processor(&handler) {
 return -> Supply $incoming {
 supply {
 my @in-progress;
 whenever $incoming -> $object {
 @in-progress .= grep(*.status == Planned);
 if @in-progress > 5 {
 await Promise.anyof(@in-progress);
 }
 push @in-progress, my $done = Promise.new;
 whenever start handler($object) {
 $done.keep();
 }
 }
 }
 }
}

The await prevents
processing of any new

messages

Quick mention: an alternative

Having a Supply per message type
sometimes is more suitable (and then a

router that emits them to each)

This is especially true of Complex Event
Processing, where we want to write logic

to correlate events

In
Summary

Shared async data structures

Writing modules that worked together
would be hard in a language with no

common understanding of what a string,
array, or hash is

By putting Promise and Supply into
the core Perl 6 language, we provide a
means for asynchronous composition

Use high-level constructs

Where possible, prefer to use await, or
supply/react blocks with whenever

These provide for structured concurrent
programming (much like if statements
and loops are the structured equivalent

to a load of goto)

Perl 6 can help, but...

At the end of the day, concurrent
programming is still concurrent

programming

Requires different thinking

Time becomes part of the programming
model

The journey continues

For Perl 6, this is just the beginning

Already we know 6.d will make await
far more scalable

Also plans for a more declarative
approach to concurrent message

processing and back-pressure

Questions
and

Discussion

