
From sockets to
services

Reactive distributed software in Perl 6

Jonathan Worthington |

What
things
mean

Distributed system

A system where the answer to "is it
working" is, "some of it"…

Distributed system

A system where the answer to "is it
working" is, "some of it"…

...and the answer to "which bits of it

are broken" is, "we can't tell"

Or, more technically…

A system consisting of more than
one process (defined as something

with independent memory, and that
may fail independently), potentially

spread over multiple containers,
VMs, machines, data centers,

countries, planets…

Inherently asynchronous,
inherently unreliable

When will data sent between
processes arrive?

Inherently asynchronous,
inherently unreliable

When will data sent between
processes arrive?

Whenever it arrives.

Inherently asynchronous,
inherently unreliable

When will data sent between
processes arrive?

Whenever it arrives.

(If it arrives.)

Chained request/response

Becomes an anti-pattern more than
a level or two deep

First services in the chain spend a

long time waiting, and their
availability is tied to the services

they call (so not autonomous)

Interactive vs. reactive

Interactive programming: ask for
something, block until we have it
(typified in the iterator pattern)

Reactive programming: subscribe,

react whenever things happen
(typified in the observer pattern)

Reactive: a better fit for
distributed systems

Means we aren't tying ourselves to
getting timely responses, just

handling things as they happen

Makes it easier to bring the time
dimension into our programs

Reactive
programming

and Perl 6

One value Many values

Interactive

Reactive

Interactive and reactive

Let's fill out this table to discover the
Perl 6 interactive/reactive types

One value Many values

Interactive Int, Order, …

Reactive

Interactive and reactive

Individual interactive values are
obtained just by running a piece of

code that produces the value

One value Many values

Interactive Int, Order, … Seq

Reactive

Interactive and reactive

A Seq represents a (perhaps infinite)
sequence of values, which are

produced on request (blocking)

One value Many values

Interactive Int, Order, … Seq

Reactive Promise

Interactive and reactive

A Promise represents a single value
that will be produced, or fail to be

produced, in the future

Keeping Promises

Anything can be put behind a
Promise. It can be kept explicitly:

> my $p = Promise.new
> $p.status
Planned

> $p.keep(42)
Nil

> $p.status
Kept
> $p.result
42

Breaking Promises

Or broken explicitly:

> my $p = Promise.new
> $p.break("I just couldn't do it man!")
Nil

> $p.status
Broken
> $p.result
Tried to get the result of a broken Promise
 in block <unit> at <unknown file> line 1
Original exception:
 I just couldn't do it man!
 in block <unit> at <unknown file> line 1

Typical Promise usage

A Promise will typically be kept by
an operation that runs concurrently

That may be by code running on
another thread, or some kind of

asynchronous I/O (running a process,
a network connection, etc.)

One value Many values

Interactive Int, Order, … Seq

Reactive Promise Supply

Interactive and reactive

A Supply represents a potentially
infinite sequence of values that will

be produced asynchronously

Basic publish/subscribe

> my $source = Supplier.new
> my $supply = $source.Supply;

> my $t1 = $supply.tap: { say "Got $_" }
> $source.emit("chili")
Got chili

> my $t2 = $supply.map(*.uc).tap: { say "OH WOW $_" }
> $source.emit("beef")
Got beef
OH WOW BEEF

> $t1.close
> $source.emit("noodles")
OH WOW NOODLES

Live vs. on-demand

A Supplier makes a live Supply.
We tap into the stream of values at
its current point; the past is gone

Most Supplies are on-demand; they
start producing values at the point

that they are tapped

The interval Supply factory

When the Supply returned by
interval is tapped, it emits values

at the specified time interval

> my $ticks = Supply.interval(0.5)
> my $tap = $ticks.tap: { say now }; sleep 3; $tap.close;
Instant:1498686115.539947
Instant:1498686116.040888
Instant:1498686116.541719
Instant:1498686117.042902
Instant:1498686117.543302
Instant:1498686118.044487

Why put these in the Perl 6
core language?

They provide a standard way to
represent asynchronous data

This means that modules producing
or processing asynchronous data can

be used together

Sockets

Minimal HTTP client

First connect, which returns a
Promise, which we may await

my $socket = await IO::Socket::Async.connect:
 'moarvm.org', 80;

Minimal HTTP client

Then, print the HTTP request to the
socket:

my $socket = await IO::Socket::Async.connect:
 'moarvm.org', 80;
await $socket.print:
 "GET / HTTP/1.0\r\nHost: moarvm.org\r\n\r\n";

Minimal HTTP client

Finally, react to data whenever it
arrives by printing it

my $socket = await IO::Socket::Async.connect:
 'moarvm.org', 80;
await $socket.print:
 "GET / HTTP/1.0\r\nHost: moarvm.org\r\n\r\n";
react {
 whenever $socket -> $chars {
 print $chars;
 }
}

Minimal "HTTP server"

React on incoming connections
react {
 whenever IO::Socket::Async.listen('0.0.0.0', 8080)
 -> $conn {

 }
}

Minimal "HTTP server"

Wait to receive something
react {
 whenever IO::Socket::Async.listen('0.0.0.0', 8080)
 -> $conn {
 whenever $conn {

 }
 }
}

Minimal "HTTP server"

Send a response and close the socket
react {
 whenever IO::Socket::Async.listen('0.0.0.0', 8080)
 -> $conn {
 whenever $conn {
 whenever $conn.print:
 "HTTP/1.0 200 OK\r\n" ~
 "Content-type: text/plain\r\n\r\n" ~
 "Wow a HTTP response!\n"; {
 $conn.close;
 }
 }
 }
}

SSL

IO::Socket::Async::SSL

A drop-in replacement for clients
(unless you need a custom CA)

use IO::Socket::Async::SSL;
my $conn = await IO::Socket::Async::SSL.connect:
 'moarvm.org', 443;

The rest of the code is the very same

IO::Socket::Async::SSL

For server, just need to supply a key
and certificate to listen:

my %ssl-config =
 certificate-file => 'server-crt.pem',
 private-key-file => 'server-key.pem';
my $server = IO::Socket::Async::SSL.listen:
 'localhost', 4433, |%ssl-config;
react {
 whenever $server -> $conn {
 # Same as for IO::Socket::Async here
 }
}

SSH

SSH::LibSSH

An asynchronous binding to libssh

Client side only, but can run
commands, do single-file SCP, and do

both port forwarding and reverse
port forwarding

Run an SSH command (1)

Create an SSH session (which does
server and client authentication),

and open a command channel

my $session = await SSH::LibSSH.connect:
 :$host, :$user, :$port, :$private-key-file;
END $session.close;

my $channel = await $session.execute('ls');
END $channel.close;

Run an SSH command (2)

Collect/reflect output and exit code

my $exit-code;
react {
 whenever $channel.stdout(:enc<utf8>) -> $chars {
 $*OUT.print: $chars;
 }
 whenever $channel.stderr(:enc<utf8>) -> $chars {
 $*ERR.print: $chars;
 }
 whenever $channel.exit -> $code {
 $exit-code = $code;
 }
}
exit $exit-code;

Port forwarding
react {
 whenever IO::Socket::Async.listen('127.0.0.1',
 $local-port) -> $connection {
 …
 }
}

Port forwarding
react {
 whenever IO::Socket::Async.listen('127.0.0.1',
 $local-port) -> $connection {
 whenever $session.forward($remote-host,
 $remote-port, '127.0.0.1', $local-port)
 -> $channel {
 …
 }
 }
}

Port forwarding
react {
 whenever IO::Socket::Async.listen('127.0.0.1',
 $local-port) -> $connection {
 whenever $session.forward($remote-host,
 $remote-port, '127.0.0.1', $local-port)
 -> $channel {
 whenever $connection.Supply(:bin) {
 $channel.write($_);
 LAST $channel.close;
 }
 …
 }
 }
}

Port forwarding
react {
 whenever IO::Socket::Async.listen('127.0.0.1',
 $local-port) -> $connection {
 whenever $session.forward($remote-host,
 $remote-port, '127.0.0.1', $local-port)
 -> $channel {
 whenever $connection.Supply(:bin) {
 $channel.write($_);
 LAST $channel.close;
 }
 whenever $channel.Supply(:bin) {
 $connection.write($_);
 LAST $connection.close;
 }
 }
 }
}

Reactive
Pipelines

Doing application protocols (such as
HTTP and web sockets) properly is

more complex

Want to break the problem down into
isolated, re-usable components

Want to be able to add middleware

Need insight into what's happening

A while back, I had the idea for a set of
distributed systems libraries that are

centered around building up a Supply
pipeline to provide reactive services

So I dug in, and in the last couple of
months have worked on it together

with a colleague at Edument

Today, I'm going to share what we've
been building

We've called it Cro.

Soon you'll see why.

We've called it Cro.

Soon you'll see why.

And then you'll groan.

TCP

ROT13 TCP service

Let's build a TCP service that will
apply the ROT13 algorithm to

everything it receives, and then send
the result back to the client

use Cro;
use Cro::TCP;

Pull in what we need

The Cro component model and
pipeline builder, and the Cro TCP

components

class Rot13 does Cro::Transform {
 method consumes() { Cro::TCP::Message }
 method produces() { Cro::TCP::Message }
 method transformer(Supply $messages --> Supply) {
 …
 }
}

Create a transform

class Rot13 does Cro::Transform {
 method consumes() { Cro::TCP::Message }
 method produces() { Cro::TCP::Message }
 method transformer(Supply $messages --> Supply) {
 supply {
 whenever $messages {
 …
 }
 }
 }
}

Create a transform

class Rot13 does Cro::Transform {
 method consumes() { Cro::TCP::Message }
 method produces() { Cro::TCP::Message }
 method transformer(Supply $messages --> Supply) {
 supply {
 whenever $messages {
 emit Cro::TCP::Message.new: data =>
 .data.decode('latin-1')
 .trans('a..mn..z' => 'n..za..m', :ii)
 .encode('latin-1')
 }
 }
 }
}

Create a transform

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;

Compose a service…

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;
$rot13.start;
react whenever signal(SIGINT) { $rot13.stop; done }

…and run it

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;
$rot13.start;
react whenever signal(SIGINT) { $rot13.stop; done }

…and run it

my Cro::Service

my Cro::Service

Hmmm…."microservice"!

But wait…

Where is the connection
management happening?

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;

Connection manager insertion

Cro::TCP::Listener produces a
Cro::TCP::ServerConnection

Our transform consumes a
Cro::TCP::Message

Connection manager insertion

When the pipeline composer spots
this kind of mismatch, it takes the

second part of the pipeline,
instantiates a connection manager
component with it, and composes

that into the pipeline

But also…

Where is the pipeline "sink" that
sends back the response?

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;

Cro::Replyable

A Cro::TCP::ServerConnection
does the Cro::Replyable role, and

provides a Cro::Sink that sends
the replies

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;

CRO_TRACE=1

Set this environment variable to get
a trace of the pipeline

<demo>

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;

HTTP

HTTP applications in Cro

Just a Cro::Transform consuming
Cro::HTTP::Request and

producing Cro::HTTP::Response

A HTTP transform
use Cro::HTTP::Request;
use Cro::HTTP::Response;
class MyApp does Cro::Transform {
 method consumes() { Cro::HTTP::Request }
 method produces() { Cro::HTTP::Response }
 method transformer(Supply $reqs) {
 …
 }
}

A HTTP transform
use Cro::HTTP::Request;
use Cro::HTTP::Response;
class MyApp does Cro::Transform {
 method consumes() { Cro::HTTP::Request }
 method produces() { Cro::HTTP::Response }
 method transformer(Supply $reqs) {
 supply whenever $reqs -> $request {
 …
 }
 }
}

A HTTP transform
use Cro::HTTP::Request;
use Cro::HTTP::Response;
class MyApp does Cro::Transform {
 method consumes() { Cro::HTTP::Request }
 method produces() { Cro::HTTP::Response }
 method transformer(Supply $reqs) {
 supply whenever $reqs -> $request {
 given Cro::HTTP::Response.new(
 :$request, :200status) {
 .append-header('Content-type',
 'text/plain');
 .set-body("Hello from Cro\n");
 .emit;
 }
 }
 }
}

Compose it into a service, run
it until SIGINT

use Cro::TCP;
use Cro::HTTP::RequestParser;
use Cro::HTTP::ResponseSerializer;

my Cro::Service $http-hello = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Cro::HTTP::RequestParser.new,
 MyApp,
 Cro::HTTP::ResponseSerializer.new;
$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

Persistent connections

HTTP/1.1 persistent connections
(many requests over one connection)

are automatically handled

The Supply of requests just emits
each request on that connection

Reactive middleware

Want a logger? Pop it in the pipeline!
use Cro::TCP;
use Cro::HTTP::RequestParser;
use Cro::HTTP::ResponseSerializer;
use Cro::HTTP::Log::File;

my Cro::Service $http-hello = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Cro::HTTP::RequestParser.new,
 MyApp,
 Cro::HTTP::Log::File.new,
 Cro::HTTP::ResponseSerializer.new;
$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

HTTPS?

Swap out the listener for an SSL one

use Cro::SSL;

my %ssl-config = :host<0.0.0.0>, :port<10000>,
 private-key-file => 'server-key.pem',
 certificate-file => 'server-crt.pem';
my Cro::Service $http-hello = Cro.compose:
 Cro::SSL::Listener.new(|%ssl-config),
 Cro::HTTP::RequestParser.new,
 MyApp,
 Cro::HTTP::Log::File.new,
 Cro::HTTP::ResponseSerializer.new;
$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

But…

Isn't this a lot of boilerplate for every
HTTP service?

Cro::HTTP::Server

Removes the pipeline boilerplate

use Cro::HTTP::Server;
use Cro::HTTP::Log::File;

my Cro::Service $http-hello = Cro::HTTP::Server.new:
 :host<0.0.0.0>, :port<10000>,
 :ssl{
 private-key-file => 'server-key.pem',
 certificate-file => 'server-crt.pem';
 },
 application => MyApp,
 after => Cro::HTTP::Log::File.new;
$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

And uh…

Isn't there some kind of nicer way to
write my application?

Cro::HTTP::Router

my $application = route {
 get -> {
 content 'text/plain', "Hello from Cro\n";
 }
}

Cro::HTTP::Router

Uses Perl 6 signatures to specify how
to perform the routing

my $app = route {
 # GET /catalogue/products/42
 get -> 'catalogue', 'products', Int $id {
 ...
 }

 # GET /catalogue/search/saussages
 get -> 'catalogue', 'search', $term {
 ...
 }
}

Cro::HTTP::Router

Of course, can use subset types to
perform stronger validation

my $app = route {
 my subset UUIDv4 of Str where /^
 <[0..9a..f]> ** 12
 4 <[0..9a..f]> ** 3
 <[89ab]> <[0..9a..f]> ** 15
 $/;

 get -> 'user-log', UUIDv4 $id {
 ...
 }
}

Cro::HTTP::Router

Optional parameters (with defaults if
needed) will work out too

my $app = route {
 # GET /products/by-tag
 # GET /products/by-tag/sparkly
 get -> 'products', 'by-tag', $tag-name? {
 ...
 }
}

Cro::HTTP::Router

Slurpy parameters are perhaps most
useful for serving up static content

my $app = route {
 get -> 'css', *@path {
 static 'static-content/css', @path;
 }

 get -> 'js', *@path {
 static 'static-content/js', @path;
 }
}

Cro::HTTP::Router

Named parameters access the query
string (can use subset types here too)

my $app = route {
 get -> 'search', :$term! {
 ...
 }

 get -> 'category', $category-name, :$min-price,
 :$max-price {
 ...
 }
}

Cro::HTTP::Router

Produces correct HTTP error codes:

404 for route not matching

405 for method not matching

400 for query string not matching

Cro::HTTP::Router

Pluggable body parsers; built-in ones
for url-encoded, multi-part, JSON

post -> 'log' {
 request-body
 -> (:$level where 'error', :$message!) {
 # Process errors specially
 },
 -> (:$level!, :$message!) {
 # Process other levels
 };
}

Cro::HTTP::Router

And a whole bunch more features I
don't have time to cover today

Including support for producing

various kinds of HTTP response, and
pluggable body serializers also

HTTP/2

Sorry to be a bit anti-climactic, but…

…the previous example already was
HTTP/2 enabled. 

Cro::HTTP::Server enables it by
default for HTTPS, using ALPN to

negotiate its use

Clients that don’t support it just get
HTTP/1.1 as usual

Actual slight anti-climax: we didn't
get push promises in place yet

Low-level plumbing is there; will
work out the high level API in the

coming month or so

Web Sockets

Yup, we do those too…

They work out rather nicely with Perl
6's reactive features

Integrated into the HTTP router

Super-simple chat backend
my $chat = Supplier.new;

get -> 'chat' {
 web-socket -> $incoming, $close {
 supply {
 whenever $incoming -> $message {
 $chat.emit(await $message.body-text);
 }
 whenever $chat -> $text {
 emit $text;
 }
 whenever $close {
 $chat.emit("A user left the chat");
 }
 }
 }
}

Clients

Also build around the Cro reactive
pipeline concept

Have a Cro::Connector at the

center (for a client, the network is in
the middle of the pipeline rather

than at either end)

Cro::HTTP::Client

Persistent connections
HTTP and HTTPS

Uses HTTP/2 if agreed with server
Pluggable body parsers/serializers

Supports middleware
Optional cookie jar

Cro::WebSocket::Client

So you can use web sockets for
communication between services

Or any other situation when you
want to connect to a web socket,

really

ZeroMQ

Cro::ZeroMQ

A module providing support for
building Cro pipelines using ZeroMQ

sockets

Rather new, but looks promising for
work distribution, pub/sub, etc.

Tooling

cro stub

Stubs a basic service, to provide a
starting point

Try to establish some decent

practices (such as taking host/port
from the environment)

cro run

Runs one or more services, assigning
them non-colliding ports

Watches for changes to the services,

and automatically restarts them

Uses a .cro.yml (not for deployment)

In closing...

We're releasing Cro today, as an
early BETA; you'll find it shortly at:

https://github.com/croservices

Along with a site at:

http://mi.cro.services/

The asynchronous programming
support in Perl 6 makes it an

interesting option for building
distributed systems

We hope that Cro will be a useful

contribution towards enabling this

Questions?

And in case you missed it:
 http://cro.services/

