
8 ways to do
Concurrency and

Parallelism in Perl 6

Jonathan Worthington |

Parallelism
Doing multiple things at the same time,

in order to decrease wallclock time.
Part of the solution domain.

Concurrency
Multiple ongoing operations with

overlapping start/end times.
Often part of the problem domain.

A parallel solution to a problem is
correct if it produces equivalent results

to a serial solution

but

Correctness is usually far harder to
define in a concurrent system, and is as

much a requirements issue as an
implementation issue

Different problems require
different tools to solve them

This session surveys various parallel and

concurrent programming features on
offer in Perl 6, both in core and in its

modules, and looks at what problems
they apply to

Threads, Mutexes,
Condition Variables,

Semaphores, etc.

The "assembly language" of
concurrency and parallelism

They make the hard things possible

and
The things that make the easy things

easy are built on top of them

Core 1 Core 2 Core 3 Core 4

Core 1 Core 2 Core 3 Core 4

Cache Memory

A thread is scheduled on a core

Provided in Perl 6 by the Thread class

my @threads = do for 1..5 -> $id {
 Thread.start: {
 say "Hi from thread $id";
 sleep 1;
 say "Bye from thread $id"
 }
}
.join for @threads;

(Nearly) nothing is atomic

What will the output of this be?

my int $i = 0;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $i++ for ^100000;
 }
}
.join for @threads;
say $i;

Always remember:

There is no promise of execution
ordering between threads, except that

which you explicitly arrange for

Nothing a thread does is atomic or
uninterruptible unless you explicitly

arrange for it to be

The Lock class

A reentrant lock (that is, a given thread
can lock/unlock it recursively)

Kernel supported, meaning the OS

knows not to schedule a thread waiting
for a lock until the lock is available

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.lock();
 $i++ for ^10000000;
 $lock.unlock();
 }
}
.join for @threads;
say $i;

Correct answer, no parallel work

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.lock();
 $i++ for ^10000000;
 $lock.unlock();
 }
}
.join for @threads;
say $i;

Correct answer, no parallel work

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.protect: {
 $i++ for ^10000000;
 }
 }
}
.join for @threads;
say $i;

Use protect to release the lock,
even if an exception occurs

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 for ^10000000 {
 $lock.protect: { $i++ };
 }
 }
}
.join for @threads;
say $i;

Parallel work, loads of contention

Multiple threads trying to update the
same data will perform poorly

To update data, the CPU core has to get

it exclusively in its cache (so all other
cores lose it from their cache)

60+ cycle penalty to get it back again!

And remember, locks are data too!

Other problems

A thread is not cheap to start/end
 Not ideal for fine-grained parallelism

No way to convey a result or failure
 But we almost always need to do so

"How many threads" is hard to answer
 Nice to have some good defaults

When to use Thread, Lock, etc.

When you need that level of control (for
example, writing native bindings)

When you're implementing higher-level

parallel/concurrent abstractions

These are not common situations!

Tasks on a
Thread Pool

What is a thread pool?

One or more threads
+

A work queueing mechanism

The runtime decides how many threads
are required, and can re-use them for

different pieces of work over time

Minimal, boring example

for 1..10 -> $i {
 $*SCHEDULER.cue: {
 say "Task $i starting";
 sleep 0.5;
 say "Task $i done"
 }
}

sleep;

Fire and forget? Really?

We nearly always care about...

Getting the result of some work
or

Waiting until it's completed
and

Dealing with any errors

Introducing Promise

A synchronization construct that may be
in one of three states:

Planned: operation planned/in progress

Kept: operation completed
Broken: operation failed

The start statement prefix

Schedules work on the thread pool and
returns a Promise representing it

my ($input-config, $app-config) = await
 start {
 load-yaml slurp $input-file
 },
 start {
 from-json $_ with slurp $*HOME.add('.fooconf')
 }

The await subroutine

Waits for one or more Promise to be
kept, returns a list of the results

my ($input-config, $app-config) = await
 start {
 load-yaml slurp $input-file
 },
 start {
 from-json $_ with slurp $*HOME.add('.fooconf')
 }

What is this good for?

Simple bits of task parallelism - that is to
say, situations where we have two or

more different tasks to set off in one go

Setting off work in the background that
we will need later on

Dependent Tasks,
 Divide and Conquer

It is also possible to await inside of
work running on the thread pool

This leads to an implicit dependency

graph of work to be done

Especially suited to divide and conquer,
where we recursively break down a

problem into smaller pieces

sub merge-sort(@values, $from = 0, $elems = @values.elems) {
 if $elems > 1 {
 my $divide = ($elems / 2).ceiling;
 merge
 merge-sort(@values, $from, $divide),
 merge-sort(@values, $from + $divide, $elems - $divide)
 }
 elsif $elems == 1 {
 (@values[$from],)
 }
 else {
 Empty
 }
}

A sequential merge sort

sub parallel-merge-sort(@values, $from = 0,
 $elems = @values.elems) {
 if $elems > 500 {
 my $divide = ($elems / 2).ceiling;
 my ($left, $right) = await
 (start parallel-merge-sort(@values, $from, $divide)),
 (start parallel-merge-sort(@values, $from + $divide,
 $elems - $divide));
 merge $left, $right
 }
 else {
 merge-sort @values, $from, $elems
 }
}

A parallel merge sort

Perl 6.c vs. Perl 6.d

In Perl 6.c, this spawns a load of threads.
If there's really a lot of elements, it could

reach the thread pool's upper limit.

In Perl 6.d, it spawns threads up to the
number of CPU cores. No risk of
deadlocking due to running out.

What's changed in Perl 6.d?

An await on a thread pool worker
thread takes a continuation

Schedules it to be resumed - quite

possibly on a different pool thread -
once the result is available

The pleasure of await
without the pain of async

When to use this approach

When a problem breaks down into parts
that depend on each other, some of

which can be done in parallel

(Many asynchronous operations are also
return a Promise. The pattern works

well for these also.)

Parallel mapping,
filtering, and looping

Data parallelism

When we want to perform the same
operation on many data items

Work may be compute bound or I/O

bound (the latter will scale far better if
using asynchronous I/O)

Parallel prime grep

Sequential runs in 17.2s

Parallel runs in 5.3s

say ^100000 .grep(*.is-prime) .elems

say ^100000 .race .grep(*.is-prime) .elems

hyper vs race

To preserve order of results relative to
order of inputs, use hyper

If that doesn't matter, use race (you can
get the first result faster, and there's less

bookkeeping to do internally)

degree

How many parallel workers

(We try to pick a default based on the hardware.
But you might want to use less resources, or know
that your problem is I/O bound, not CPU bound.)

batch

The number of data items to give to a
worker at a time

(You'll often want to tune this, based on

knowledge of work per item and how important
latency is. Lower values give better latency. Higher

values give better throughput.)

Tweaked parallel prime grep

Default parallel runs in 5.3s...

...but tweaking gets it to 4.1s*

* On my 6-core workstation with hyper-threading enabled

say ^100000 .race .grep(*.is-prime) .elems

say ^100000 .race(:1024batch, :12degree) .grep(*.is-prime) .elems

A recent work example

We parse a file with various formulas,
each of which we then parse/compile

method section:sym<output>($/) {
 make 'output' => [$<output>.map({
 my %props = .ast;
 with %props<formula> -> $formula {
 my $ast = parse-formula($formula);
 %props<compiled-formula> = compile-formula($ast);
 }
 Foo::Model::Output.new(|%output-props)
 })];
}

A recent work example

The work for each is independent, but
order matters...

method section:sym<output>($/) {
 make 'output' => [$<output>.hyper.map({
 my %props = .ast;
 with %props<formula> -> $formula {
 my $ast = parse-formula($formula);
 %props<compiled-formula> = compile-formula($ast);
 }
 Foo::Model::Output.new(|%output-props)
 })];
}

A recent work example

...and there's few formulas, but quite a
bit of work for each one

method section:sym<output>($/) {
 make 'output' => [$<output>.hyper(batch => 1).map({
 my %props = .ast;
 with %props<formula> -> $formula {
 my $ast = parse-formula($formula);
 %props<compiled-formula> = compile-formula($ast);
 }
 Foo::Model::Output.new(|%output-props)
 })];
}

When to use this approach

When you have the same work to do for
a whole set of data items

When the work for each is independent
from that of other data items (so there's
no shared state needed between them)

Monitors

Objects and concurrency?

Objects are stateful, and state makes
concurrency hard

but

OO correctly applied bounds access to
mutable state to the object's methods

Tell, don't ask

Good OO designs have very few getters
and query methods

Instead, they are heavy on command

methods - that is, we send objects
messages telling them what to do

Follow this design rule, and the
object boundary is a natural

concurrency control boundary

class Index {
 has $!lock = Lock.new;
 has %!index{Str};

 method add(Str $word, Str $document --> Nil) {
 $!lock.protect: { ... }
 }

 method append-docs(Str $word, @target --> Nil) {
 $!lock.protect: { ... }
 }

 method elems(--> Int) {
 $!lock.protect: { ... }
 }
}

class Index {
 has $!lock = Lock.new;
 has %!index{Str};

 method add(Str $word, Str $document --> Nil) {
 $!lock.protect: { ... }
 }

 method append-docs(Str $word, @target --> Nil) {
 $!lock.protect: { ... }
 }

 method elems(--> Int) {
 $!lock.protect: { ... }
 }
}

OO::Monitors

Uses meta-programming to insert the
locking around methods automatically

(Also supports conditions variables, for more

advanced use cases)

use OO::Monitors;

monitor Index {
 has %!index{Str};

 method add(Str $word, Str $document --> Nil) {
 %!index{$word}{$document} = True;
 }

 method append-docs(Str $word, @target --> Nil) {
 @target.append(.keys) with %!index{$word};
 }

 method elems() {
 %!index.elems
 }
}

use OO::Monitors;

monitor Index {
 has %!index{Str};

 method add(Str $word, Str $document --> Nil) {
 %!index{$word}{$document} = True;
 }

 method append-docs(Str $word, @target --> Nil) {
 @target.append(.keys) with %!index{$word};
 }

 method elems() {
 %!index.elems
 }
}

Pass in array to
append to

avoids a query
method and risk
of laziness bug

When to use this approach

When you have state that needs to be
used concurrently, and there's no other

built-in mechanism that can provide that

Onus is still very much on the developer
to do a good OO design

Lock-free
Data Structures

What does lock-free mean?

A data structure that you can use
concurrently without the need for locks

Not just that your code doesn't need
locks, but also that the data structure

itself doesn't use locks internally

How is this possible?!

How is this possible?!

CPUs provide atomic operations.
Perl 6 provides access to them.

my atomicint $i = 0;
my @threads = do for 1..5 -> $id {
 Thread.start: {

 $i ++ for ^100000;
 }
}
.join for @threads;
say $i;

Atomic increment and atomic addition
can sometimes be handy

Far more powerful is the atomic

compare and swap operation, commonly
known as "CAS"

sub cas($reference is rw, $expected, $new) {
 my $seen = $reference;
 $reference = $new if $seen =:= $expected;
 return $seen;
}

CAS is provided by the hardware, but we
can imagine it like this - with the

guarantee that it is atomic

Amazingly, we can make any data
structure we want atomically

updateable using CAS.*

* If we follow the rules. Very, very carefully.
Efficiency will vary widely by data structure.

class ConcurrentStack {
 ...
}

As an example, let's implement a lock-
free stack data structure

Supports concurrent pushes and pops

class ConcurrentStack {
 my class Node {
 has $.value;
 has Node $.next;
 }
 has Node $!head;

 method push($value --> Nil) { ... }

 method pop() { ... }
}

It's a linked list of Node objects. They
nodes themselves are immutable. The

only mutable thing will be $!head.

method push($value --> Nil) {
 loop {
 my $next = $!head;
 my $new = Node.new: :$value, :$next;
 last if cas($!head, $next, $new) === $next;
 }
}

Here is push. This retry loop structure is
typical of lock-free algorithms. If we

must retry, it's because another thread
succeeded global progress bound

method pop() {
 loop {
 my $cur = $!head;
 fail "Stack is empty" without $cur;
 if cas($!head, $cur, $cur.next) === $cur {
 return $cur.value;
 }
 }
}

The pop method is similar, except it can
fail due to an empty stack

This retry loop structure is so common,
Perl 6 provides a form of CAS that takes
a block computing the new value based
on the current one, and does the retry

loop automatically for us

method push($value --> Nil) {
 cas $!head, -> $next {
 Node.new: :$value, :$next
 }
}

method pop() {
 my $taken;
 cas $!head, -> $current {
 fail "Stack is empty" without $current;
 $taken = $current.value;
 $current.next
 }
 return $taken;
}

Modules available so far

Concurrent::Queue
Concurrent::Stack
Concurrent::Trie

When to use this approach

When the data structure you need has a
lock-free implementation available

When you don't need blocking

(A lock-free queue would not be a good choice for a

thread pool's work queue, because it must block
efficiently when there is no work to do.)

Reactive
Streams

Streams of asynchronous values

A Promise represents an asynchronous
operation that produces a result

A Supply represents an asynchronous
operation that produces many results
over time (it may be finite or infinite)

Examples

Packets arriving over a socket
Output from a spawned process

GUI events
Ticks of a timer

Messages from a message queue
Domain events

Syntactic relief

Perl 6 provides syntactic support for
working with asynchronous streams

At the heart of it are react and supply

blocks, which enforce one-at-a-time
message processing even when dealing

with many data sources

An asynchronous web crawler

use Cro::HTTP::Client;

sub crawl($initial-url) {
 react {
 my %seen;
 my $client = Cro::HTTP::Client.new;
 crawl-url($initial-url);

 sub crawl-url($url) {
 ...
 }
 }
}

An asynchronous web crawler

sub crawl-url($url) {
 return if %seen{$url}++;
 say "Getting $url";
 whenever $client.get($url) -> $response {
 if $response.content-type.type-and-subtype
 eq 'text/html' {
 get-links($response, $url);
 }
 QUIT {
 default {
 note "$url failed: " ~ .message;
 }
 }
 }
}

An asynchronous web crawler

sub get-links($response, $base) {
 whenever $response.body-text -> $text {
 for $text.match(/'href="' <!before \w+':'>
 <(<-["]>+/, :g) {
 crawl-url cat-uri $base, ~$_;
 }
 }
}

What's being done for us?

Concurrency control, to protect our state
(the %seen URL hash)

Tracking outstanding work, and

terminating when there's no more

Propagating any errors we forget

When to use this approach

Whenever your problem looks like - or
can be seen as - a stream of events

A lot of concurrent problems can be seen

this way. Further, many concurrency
tasks become clearer when considered

as an event processing problem.

Channels and
Workers

Introducing Channel

A blocking concurrent queue, which can
also convey error and completion

Safe for multiple threads to send values

Safe for multiple threads to (compete to)

receive values

Channel vs. Supply

With a Supply, the sender pays the
costs of processing a message (thus

providing a backpressure mechanism)

With a Channel, the receiver pays the
cost of processing a message (plus

there's a memory cost for the queue)

Staged Event-Driven Architecture

Build a system out of a set of stages that
are joined together by Channels

For stages where it is safe to do so, can

spawn multiple workers

Queue lengths show bottlenecks

Example: json-search

Directory tree walker (finds .json files)

JSON
Parser

JSON
Parser

JSON
Parser

JSON
Parser

Apply JSONPath query, show results

Example: json-search

Make channels and spawn workers

use JSON::Fast;
use JSON::Path;

sub MAIN(Str $query, Str $dir = '.') {
 my $to-parse = Channel.new;
 my $to-search = Channel.new;
 my $finder = start find-json-files($dir, $to-parse);
 my @parsers = (start parse $to-parse, $to-search) xx 8;
 Promise.allof(@parsers).then({ $to-search.close });
 my $searcher = start search $to-search, $query;
 await $finder, @parsers, $searcher;
}

Example: json-search

Look for JSON files, send the paths

sub find-json-files($start-dir, $to-parse) {
 sub walk($dir) {
 for dir($dir) {
 when .d { walk($_); }
 when .f && .extension eq 'json' {
 $to-parse.send($_);
 }
 }
 }
 walk($start-dir.IO);
 $to-parse.close;
}

Example: json-search

Parse each file, send on the result

sub parse($to-parse, $to-search) {
 for $to-parse.list -> $path {
 $to-search.send(SearchFile.new(
 :$path, :json(from-json(slurp($path)))));
 CATCH {
 default {
 note .message;
 $to-search.send(SearchFile.new(
 :$path, :error(.message)));
 }
 }
 }
}

Example: json-search

Query the data and show results

sub search($to-search, $query) {
 my $path = JSON::Path.new($query);
 for $to-search.list {
 if .error {
 note "ERROR {.path}: {.error}";
 }
 orwith $path.value(.json) -> $result {
 say "{.path} &to-json($result)";
 }
 }
}

whenever and Channel

It's also possible to consume values from
a Channel reactively

This allows multiplexing channels
themselves, or even multiplexing

channels with supplies and promises

When to use this approach

When you need "receiver pays"
semantics for messages

When wanting to build work pipelines

and dedicate a thread to each worker (or
multiple for stateless workers)

Channels and
Workers

Asynchronous
Streams

Lock-free
Data Structures

Parallel map,
filter, and loop

Monitors

Dependent
Tasks

Tasks on a
Thread Pool

Threads,
Mutexes, etc.

Thank you!

Questions?

